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1.0 Preliminaries
1.1 Definition of Scientific Problem:

This report is an investigation of time-frequency representations of radar signals
with a view to accurately detect small differences between radar returns. This objective is

congruent with BMDO objectives of being able to detect target from decoy using active or
passive sensing methods.

1.2 The Aim

The aim of this work is to provide computational methods in signal analysis which
will permit:

» the detection of both target scattering centers and resonances.
» ultrahigh resolution imaging of targets.

» the use of pattern recognition techniques in resolving small differences in surface
conduction between targets and decoys.

1.3 State of the Art Benchmark from which BSEI Research Proceeds

Radar means ranging and detection and the detection process is a level detection.
The signal used to “paint” a target is usually of a duration that in length it is longer than the
target length. Therefore the target becomes a “point scatterer” and level detection of the
target is all that can be used. If the target is stationary - which is not the case in the BMDO
scenarjo - multiple signal returns can be obtained from the target and using cross range and
doppler analysis a synthetic aperture radar (SAR) can achieve target imaging. Imaging can
also be achieved if the radar is stationary and the target is moving - a process which is the
geometrical inverse of SAR and and known as inverse synthetic aperture radar or ISAR.
BMDO does utilize stationary radars but only late in the trajectory of an incoming missile.
In both instances of SAR and ISAR the synthetic aperture methods change the target from
being a point scatterer to a multiple scatterer. Furthermore, the conventional methods of
target imaging, SAR and ISAR, require not merely a wide signal bandwidth, but also a
long imaging time. Clearly, the BMDO mission is served optimally, if there are methods
for causing the target to be a multiple scatterer, but which require neither the radar nor the
target to be stationary, and which also do not require a long imaging time. In fact, there is a
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such a method and it requires the transmitted signal in space to be less than the length of the
target.

If the transmitted signal in space is less than the length of the target, the signal
return from the target decomposes into its individual scattering components. That is to say,
there is a unique signature from the nose, the fins, the tail, etc. Furthermore, if the signal
return is not averaged but is received as a fast sampled time series preserving amplitude,
phase, frequency and perhaps polarization modulations, i.e., is homodyned, as opposed to
heterodyned, the speed of the currents set up on the surface of the target would have a
unique signature. In other words, there is reason to expect that the surface material
composition would differentiate signals returns from targets identical in size but differing in
material composition. In which case, a signature would be available distinguishing a
missile from a decoy, which has a different material composition. Also, the imaging time is

far less than that required by SAR and ISAR and could be on the order of one pulse
transmit time.

Given a radar which transmits signals shorter than the length of designated targets,
which - as it performs more than just ranging and detection - might be called a sensor, the
next problem to be addressed is that of return signal analysis. Because in SAR, ISAR and
very short pulse radar the target consists of a number of scatterers - discontinuities,
cavities, corners, etc. and each provides a different backscattering behavior, a first set of
signature characteristics identifying the target is the backscattering (from a multiple
scatterer). A second set of signature characteristics consists of the resonances of the target.
To preserve in analysis the first set of characateristics requires precision in the time
dimension; to preserve in analysis the second set of characteristics requires precision in the
frequency dimension. The state of the art in analysis would be to use wavelet methods for
precision in the time dimension and Fourier analysis for precision in the frequency
dimension. The present work’s objective is to provide (adaptive) methods which provide
precision in both the time and frequency dimensions.

The requirement of analysis precision in both time and frequency is occasioned by
other factors. A very short pulse interacting with a larger target elicits there types of
responses: (1) the early time response; (2) the resonance response; and (3) the late time
response. The first, the early time response, is due to currents being set up on the surface
of the target and is target aspect-dependent. The second, the resonance response, is
dependent on the length of the target and is aspect-independent in harmonic components but
aspect-dependent with respect to the amplitude of those harmonic components. The third,
the late time response, is due to the delayed “ring down” of the target after “painting” by the
signal and its physics is similar to that of the resonance response. Clearly, target
identification should be based on a mix of the three kinds of response with their differeing
aspect dependencies. '

Another major departure of the present work from the state of the art is in the nature
of the method of target identification. The method is neither level detection as in
conventional radar, nor imaging as in conventional SAR and ISAR. The new method is
pattern identification. Given time-frequency methods preserving both the backscattering
center signatures and resonances from a multiple scattering target, the identification method
would be by pattern identification in the time-frequency plain.

In summary, we offer methods different from state-of-the-art for solving the
BMDO problem of providing an ultrahigh resolution sensor which can identify missile
from decoy. We advocate pulses shorter than the length of the target, adaptive time-
frequency analysis methods which preserve target backscattering centers and resonances,
and pattern identification of target and decoy.



1.4 Deficiencies in State of the Art Addressed by BSEI Research

BMDO lacks an active high resolution sensor as well as the capability of detecting
missiles from debris and decoys. A short pulse sensor is smaller in size, weight and power
than conventional radars and requires a smaller antenna. Therefore a short pulse sensor can
be deployed either on satellites or as a missile seeker.

The state of the art in conventional radars can only achieve high resolution in the
SAR or ISAR configuration. The former requires a stationary target with a moving radar
and the latter requires a moving target with a stationary radar. A short pulse system does
not have such requirements to achieve high resolution. Denied the SAR and ISAR
configurations, conventional radars achieve target identification by level detection.
Therefore a target missile cannot be distinguished from a decoy. A short pulse system
achieves a signal return which can be analyzed using time-frequency methods and target
can be distinguished from decoy by pattern matching techniques.

1.5 Implementation by BMDO

The implementation of a short pulses sensor/radar together with the correct time-
frequency approaches to processing is straightforward if a development program is
initiated. Alternatively, simulation and modeling can take place using the VDHTB testbed.

1.6 What is new, innovative in BSEI's research results and what are the
implications?

1.6.1 New methods for achieving discrimination of both frequency-
dependent aspects of the target and time-dependent scattering centers.

The Adaptive Gabor Representation (AGR) was used to analyze a radar signal
return in two forms: the functions were either varying Q or constant Q. We found the
constant Q form is optimum. Frequency hopping signals as well as monocycle pulses were
analyzed with the AGR and the Combined Wigner-Ville Distribution of the AGR
calculated. It was shown that with all frequency components combined the frequency
components of the signal can be identified, but not the pulse. However, when the
Combined Wigner-Ville representation of the AGR is calculated using only the high
frequency components of the latter, it was seen that the monocycle can be detected. Thus,
these methods seems entirely appropriate for detecting the frequency-dependent and the
time-dependent (transient) scattering centers of targets.

The AGR and the Combined and Single Wigner-Ville Distribution of the AGR were
calculated for frequency hopping signals, pulses and radar return signals The AGR requires
finding the optimum wavelet center frequency, optimum dwell and optimum modulating
envelope. The hypothesis under test was that whereas the AGR has been viewed as an

optimization with respect to three variables: o, 7, and f,, with ¢, setting the envelope size
independently of the other two variables, use of a constant Q Gabor wavelet would permit

an efficient optimization using only one variable - &, - with the other signal parameters
functions of that one variable. It is shown that the constant Q Gabor wavelet with f,.1,
=Af.At = 1/2, is optimum and that only one variable is required for optimization.

1.6.2 New wavelet analysis

A new wavelet analysis was developed based on orthogonal parabolic cylinder or
Weber functions of increasing level described by the expansions: Af.At = f.t, = 1/2 (2n +



1, n=0,1,2,..... (i.e., Constant Q Orthogonal Weber Function Wavelets (WFWs). Using
a frequency hopping and pulse test signals, these wavelets are able to detect both resonance
and pulse scattering features. Using scattergram plots between three levels of wavelets and
two scale dilations, unique features of both the test signal and radar return signals can be
demonstrated. This research is unique in two respects: using orthogonal wavelets of
different levels and in the scatterogram cross-comparison of three levels of analysis, which
can provide unique signatures for targets. In the case of the test signal of a frequency
hopping signal, plus a pulse, it is seen that discernible cyclic patterns occur which may be
correlated with the number of frequencies in the signal - four. In the case of the radar return
test signal, it is seen that recognizable helical patterns occur, which may provide a unique
signature for targets.

Using a frequency hopping and pulse test signals, WFWs permit detection of both
resonance and pulse scattering features. The characteristics of these wavelets are based on
IIF filter principles. It is customary to believe that a discrete time scaling (low pass) wavelet
is first necessary to obtain the discrete time (high pass) wavelet. Here we show that the
expansion method permits an estimate of the continuous time high pass wavelet from the
summed Fourier spectra of the expansions, n = 1, 2,... e. Future work will examine
whether repeated analysis of the original signal by higher order wavelets is equivalent to the

customary method of using but one scaling function and one wavelet with signal
decimation.

1.6.3 Instantaneous phase information.

Instantaneous phase information was obtained from application of wavelet analysis.
A detailed thumbprint of a complex (target return) signal can be obtained which can be used
as data supporting a detailed wavelet modulus description of the same signal. A result s
obtained by calculating the differential phase which also provides supporting data. There
are also optimum dilations for providing correlated measures.

The probability distribution function for the target return signal processed with a
specific dilation of the wavelet and the mutual information for two dilations also provides
supporting data to the modulus thumbprint of the signal.

The phase information and mutual information provide excellent supporting data to
that providing by the wavelet modulus. In combination a more detailed analysis of target
information is possible.

1.6.4 Target Differentiation.

Differentiation of two target return signals was accomplished using (1) wavelet
processing and (2) fractal analysis of the results of that wavelet analysis. Log-Log plots
(amplitude versus filter scale) revealed stable distributions (as opposed to asymptotically
Gaussian distribution) behavior - increasing in the case of one signal, and decreasing in the
case of the other. This is a fractal property. The computed fractional dimension per time bin
revealed clear differences between the two signals. The Fano factors for means across
filters and for each time bin were also computed. There is a clear difference in the Fano
factor patterns generated permitting the differentiation of the signals. Thus, fractal analysis

appears to be a promising approach to differentiating signals and will be further explored in
future months.

1.6.5 Nonlinear Collective Exzcitations.

Analyses in terms of (a) higher-order symmetries; (b) differential forms; and (c)
group theoretic, and formulations in electromagnetic theory of the role of the A-field in (a)
nonlinear collective excitations in a 2-dimensional electron gas; and (b) solitons in new
SAW devices and heterostructures in general. The method of generation of modulated



TeraHertz pulses utilizes a plasma mirror dependent on the formation of soliton
transmission.

1.6.6 The Bootstrap Method.

The Bootstrap method was used for estimating the accuracy of a paramater
estimator taken, in the instances addressed, as radar signal returns. We demonstrate - for
the first time to our knowledge - that the technique can be applied to distinguish targets. We
also apply techniques taken from fractal theory and deterministic chaos theory to show that
radar returns have both a fractal nature and are not time series produced by a random
mechanism, but rather by a deterministic chaotic mechanism. We are able to show that the
fractal properties of the power spectra, the variance and Fano Factor distinguish between
two target returns. Use of embedding dimensional analysis also reveals the deterministic
chaotic, as opposed to random, nature of the radar returns.

1.7 Implications of this research

This research provides time-frequency methods for analyzing sensor/radar signal
returns to achieve ultrahigh resolution and the possibility of distinguishing target from
decoy. The research also indicates the advantage of deploying a short pulse sensor/radar, in
which the pulse is shorter than the length of the target.

1.8 Future work

The completed work addressed a number of new research areas which require much
more development time than was given in the limited time available in the present contract.
These areas include: Constant Q Orthogonal Weber Function Wavelets, application of the
Bootstap method, fractal analysis methods and the Adaptive Gabor representation. The
development of these areas can take place in a simulation environment.

1.9 Future needs

To conduct future work in these areas there are two requirements: (1) a source of
realistic signal returns from missiles and decoys; and (2) a testbed implementation, €.g., the
VDHTB. Alternative to the testbed implementation using computer analysis of the signals,
the algorithms described in the present work could be implemented in ASIC or hardware
designs. However, the preference would be to firstly test the algorithms in a testbed and
then proceed to hardware implementation.

2.0 Summary of Results of Contract DAAGS55-98-C-0044

These reported investigations of time-frequency representations of radar signals
were acrried out with a view to accurately detect small differences between radar returns.
This objective is congruent with BMDO objectives of being able to detect target from
decoy.

2.1 Representative radar data was analyzed with (1) continuous Gabor wavelets; (2)
ambiguity functions; and (3) Wigner-Ville distributions, in order to determine the optimum
form of analysis for the RF sensor returns.

2.2 We are able to show the superiority of the wavelet method and the usefulness of
Gaussian differential wavelets in detecting local differences in the smoothness of the decay



of transitions in the signal. The capability of detecting such differences may be critical in
discriminating targets from decoys. In the case of the spectrogram, we showed that the
method can pick out well the onset and offset of the various modulations in the signal.
However, due to the fact that the window is constant (even although the modulated
frequency of the kernel is changing), the spectrogram provides a biased representation of
the signal as the sampling window excludes the influence of signal components outside the
unchanging windowed “box”. The spectrogram is thus not an optimum representation of
signals and future work will demonstrate how to amend the spectrogram method to obtain
wavelet representations from a similar commencement.

2.3 New methods were developed for achieving heightened discrimination capability. The
action of the Zak Transform in achieving this aim was investigated using a radar return
signal exemplar with variance of the Zak summing variable k. It was shown that
discrimination capability of fine structure is lost as the range of k increases. In order to
investigate improvements in discrimination capability, the Zak transform was performed
not on the radar exemplar but on the radar exemplar after Gabor analysis with kernels of
various sizes. It was shown that there are distinctive patterns for each of the kernels used.
Therefore a radar return signal can be analyzed into a 4-dimensional pattern signature when
the results of the analysis patterns of multiple kernels are summed. This method holds
promise for increasing fine discrimination capability.

2.4 New methods were developed for achieving discrimination of both ‘frequency-
dependent aspects of the target and time-dependent scattering centers. The Adaptive Gabor
Representation (AGR) was used to analyze a radar signal return in two forms: the functions
were either varying Q or constant Q. We found the constant Q form appears optimum.
Frequency hopping signals as well as monocycle pulses were analyzed with the AGR and
the Combined Wigner-Ville Distribution of the AGR calculated. It was shown that with all
frequency components combined the frequency components of the signal can be identified,
but not the pulse. However, when the Combined Wigner-Ville representation of the AGR
is calculated using only the high frequency components of the latter, it was seen that the
monocycle can be detected. Thus, these methods seems entirely appropriate for detecting
the frequency-dependent and the time-dependent (transient) scattering centers of targets.

2.5 New methods continued to be developed for achieving discrimination of both
frequency-dependent aspects of the target and time-dependent scattering centers. The
Adaptive Gabor Representation (AGR) and the Combined and Single Wigner-Ville
Distribution of the AGR were calculated for frequency hopping signals, pulses and radar
return signals The AGR requires finding the optimum wavelet center frequency, optimum
dwell and optimum modulating envelope. The hypothesis under test was that whereas the

AGR has been viewed as an optimization with respect to three variables: @, #, and f;, with
a, setting the envelope size independently of the other two variables, use of a constant 0

Gabor wavelet would permit an efficient optimization using only one variable - &, - with
the other signal parameters functions of that one variable. It is shown that the constant Q

Gabor wavelet with f,.t, =Af.At = 1/2, is optimum and that only one variable is required
for optimization.

2.6 Investigations were initiated of wavelets based on orthogonal parabolic cylinder or
Weber functions of increasing level described by the expansions: Af.At = f.t, = 1/2 2n +
D, n=0,1.2,..... (i.e., Constant Q Orthogonal Weber Function Wavelets (CQOWs).
Using a frequency hopping and pulse test signals, these wavelets are able to detect both
resonance and pulse scattering features. Using scattergram plots between three levels of
wavelets and two scale dilations, unique features of both the test signal and radar return



signals can be demonstrated. This research is unique in two respects: using orthogonal
wavelets of different levels and in the scatterogram cross-comparison of three levels of
analysis, which can provide unique signatures for targets. In the case of the test signal of a
frequency hopping signal, plus a pulse, it is seen that discernible cyclic patterns occur
which may be correlated with the number of frequencies in the signal - four. In the case of
the radar return test signal, it is seen that recognizable helical patterns occur, which may
provide a unique signature for targets. .

2.7 Further investigation sof CQOWs showed that using a frequency hopping and pulse
test signals, these wavelets are able to detect both resonance and pulse scattering features.
The characteristics of these wavelets are based on IIF filter principles. It is customary to
believe that a discrete time scaling (low pass) wavelet is first necessary to obtain the
discrete time (high pass) wavelet. Here we show that the expansion method permits an
estimate of the continuous time high pass wavelet from the summed Fourier spectra of the
expansions, n = 1, 2,... eo. Future work will examine whether repeated analysis of the
original signal by higher order wavelets is equivalent to the customary method of using but
one scaling function and one wavelet with signal decimation.

2.8 Methods were developed addressing instantaneous phase information obtainable from
application of wavelet analysis. We show that a detailed thumbprint of a complex (target
return) signal can be obtained which can be used as data supporting a detailed wavelet
modulus description of the same signal. We also show a result from calculating the
differential phase which also provides supporting data. It is also shown that there are
optimum dilations for providing correlated measures.

We also calculated the probability distribution function for the target return signal
processed with a specific dilation of the wavelet and the mutual information for two
dilations. This form of analysis also provides supporting data to the modulus thumbprint of
the signal.

The phase information and mutual information provide excellent supporting data to
that providing by the wavelet modulus. In combination a more detailed analysis of target
information is possible.

2.9 Methods were developed addressing the differentiation of two target return signals
using (1) wavelet processing and (2) fractal analysis of the results of that wavelet analysis.
Log-Log plots (amplitude versus filter scale) revealed stable distributions (as opposed to
asymptotically Gaussian distribution) behavior - increasing in the case of one signal, and
decreasing in the case of the other. This is a fractal property. The computed fractional
dimension per time bin revealed clear differences between the two signals. The Fano
factors for means across filters and for each time bin were also computed. There is a clear
difference in the Fano factor patterns generated permitting the differentiation of the signals.

Thus, fractal analysis appears to be a promising approach to differentiating signals and will
be further explored in future work.

2.10 Analytical methods were developed in terms of (a) higher-order symmetries; (b)
differential forms; and (c) group theoretic, and formulations in electromagnetic theory of
the role of the A-field in (a) nonlinear collective excitations in a 2-dimensional electron gas;
and (b) solitons in new SAW devices and heterostructures in general. The method of
generation of modulated TeraHertz pulses utilizes a plasma mirror dependent on the
formation of soliton transmission. Therefore an analysis was commenced of such soliton
transmissions using the various approaches described.

2.11 Analytical methods were developed based on the Bootstrap method for estimating the
accuracy of a paramater estimator taken, in the instances addressed, as radar signal returns.
Here, we show - for the first time to our knowledge - that the technique can be applied to



distinguish targets. We also apply techniques taken from fractal theory and deterministic
chaos theory to show that radar returns have both a fractal nature and are not time series
produced by a random mechanism, but rather by a deterministic chaotic mechanism. We are
able to show that the fractal properties of the power spectra, the variance and Fano Factor
distinguish between two target returns. Use of embedding dimensional analysis also
reveals the deterministic chaotic, as opposed to random, nature of the radar returns.

3.0 Continuous Gabor Wavelets
The Gabor wavelet kemel is:
V= Exp[—c’,’ltz] x Cos(&,1).

and in general:

V(1) = g)Expli& 1],

where g(t) is a Gaussian window:

(t)———l—-—Ex —-i
8 (0_2”)1/4 D 202 |

) 1
with 151 = 507

The continuous Gabor wavelet transform is then defined as:

Wir.s)= | f(t)—j—;ly *(t _s T)dt.

Two examples of radar signal returns are shonw in Figs. 3.1A and 3.2A. The

Gabor transforms, Wf{7,s), are shown in Figs. 3.1B-D and 3.2B-D, respectively. It can be
seen that the two signal returns can be identified by 3-D pattern detection.

Tgt:l,5ig:#0001 A22-28.9899997,41:13.8099999¢

25 S0 75 100 125 159 1785

Fig. 3.1A. 1st example of radar signal return.



Tgt:l,Sig:#0001 ,A2:-24.9899997,41:13.8099999¢ Tgt:l,$ig:#0001 ,AT:-24.9899997 A

3.80999994

D.

Fig. 3.1B, C &D. 1st example of radar signal return after Gabor wavelet filtering - 20 filters used.

Tgt:l,Sig:#1162,A2:-22.5300006,11:7.38000011¢

bA A

200 400 600 800

Fig. 3.2A. 2nd example of radar signal return.
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22.5300006,41:7.380000114

Tgt:l,Sige#1162,A2:-22.5300006,21:7.280000114 Tgt:l,Sigi#l162,A2:

D.
Fig. 3,2B, C & D. 2nd example of radar signal return after Gabor wavelet filtering.
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4. Ambiguity Function.
The ambiguity function is:
Af(t,0) = Jf t+% f t—% Exp[—iax]dt;

or, in the frequency domain:
1% ) 1) .
Af(1,0) = E_J;f v+ —é')f | ? Exp[lTV]dV,

and measures the spread of the signal f in time and of f‘ in frequency, i.e., the energy
concentration. Figs. 4.1A-C represents the energy spread of the radar return example
shown in Fig. 3.1A.

Xarrow-Band Ambiguity Functiom Tgt:l,S1g:#0001,47:-28.9899997,41:13.8099999¢ Narrow-Band Ambiguity function Tgt:l,Sig:#0001 AT3-24,9899997,41:13.8099999¢

el . * _cowmani-

<

At

100

Narrow-Band Amdiguity runction ?gt:il,5ig:#0001,A2:-2¢.9399997,A1:13.8099999%

C.
Fig. 4.1A, B & C. First example: ambiguity function.
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5.0 Wigner-Ville Distribution.

The Wignér -Ville distribution is a quadratic form:

Pf(1,0) = :j: f(z + %)f * (z - %)Exp[—im]d‘t

or

P, f(t,0) = ;[ f (w + %)f * (a) - %)Exp[—-z‘ vtldv

and defines a time-varying power spectrum for non-stationary processes. Simply stated,
the Wigner-Ville transform is the cross-correlation of a signal with itself after a time and
frequency shift.

The two characteristics which make the Wigner-Ville distribution nonoptimal for
signal analysis purposes are that it can take on negative values and that the presence of
interference terms. Fig. 5.1A. is an example of two Gabor signals. Figs. 5.1B-D show the
Wigner-Ville transforms of those signals. The interference terms are clearly seen.

1

At
SR TRTIN. 1k

-1

Fig. 5.1A. Two Gabor packets.
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Wigner-ville, Example

Wigner-ville, Example
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Fig. 5.1B, C & D. Wigner-Ville transform of 2 Gabor packets.
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Fig. 5.2A-D are the Wigner-Ville transforms of the radar return example shown in
Fig. 3.1A.

Wigner-ville Function Tgb:l,Sigs#0001 AZ3-2%.9899997,A1:13.8099999¢

Wigner-¥ille Function Tgt:1,Sig:#0001 ,A2:-29.9899997,a1:13. 80999998

BT 6 000 .

80 80

60 + 60

%0 | 90

20 1 20

i 2 L .
a 25 S0 7% 100 125 is0 0 25 50 ?5 100 128 150

A. B.

C.
Fig. 5.2A, B & C. Wigner-Ville Transform of 1st Example.
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6.0 Wavelets compared with spectrogram

6.0.1 Prologue. ~
The radar signal shown in the following Fig. 6.1 is wavelet transformed in the

examples to follow. The frequency chirp shown in Fig. 6.2 is used as an example in the
spectrogram analysis.

Tgt:1,Sig:#0001 ,A7:-24.9899997,11:13.8099999%

25 50 75 100 125 150 175

Fig. 6.1. Radar signal example.

' “M

dduwﬂ I

Fig. 6.2. Linear chirp f(f) = Exp[iar®].

The wavelet integral is defined:

WiGs)= | f(t)%—l// *(t "s“)dz.

Calderon and, independently, Grossman and Morlet proved that if y e I*(R) is a real

function (that is, L*(R)represent finite energy functions such that: '“ f (t)|2dt < +o0) and
this real function is such that:

16



c _Tlv“f(w)[zd
=T O < +oo, Eq. 6.1.
0

then

T| f@fdr = —Cl—TﬁWf(u, s)|2du-f§.

¥ 00—

This proof demonstrates the possibility of wavelet decomposition of signals and is
predicated on the conditions described by Eq. 6.1, which is called the admissibility
condition. For the integral described by the admissibility condition to be finite, the wavelets

must have an average of zero.

6.1 Mexican hat wavelet.

The wavelets equal to the second derivative of the Gaussian are Mexican hat
wavelets. The normalized Mexican hat is:

l.2 2

f) = | 1 B - .
v() 230 | o2 Xp 20°

Fig. 6. 3 shows an analysis of the radar return signal example (Fig. 6.1). It can be seen
that use of this wavelet picks out the relevant features of the signal.

Mexican hat wavelet: Tgt:l 5ig:¥0001.22:-2%. 7.41:13

Mexican hat wavelet; Tgt:l,sig 1,AZi-28 7,A1513.

vu' " UVU

L]

»

178
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Mexican Rat wavelet:  TgE:).S1g:0001.AT:-2%.9899997,A1:13.80999994

C.
Fig. 6.3. Analysis of Radar example with Mexican hat wavelet.

6.2 Local Regularity of signals and Gaussian differential wavelets.

Local signal regularity is characterized by the decay of the wavelet transform across
scales. The local regularity of a signal, f{z), is characterized by the Lipschitz exponents at a
point. Lipschitz regularity for a function, f{z), is defined: A function f is pointwise
Lipschitz o 20 at v if there exists K > 0, and a polynomial p, of degree m = | ot [such that
VieR,|f@®)-p,@)|<Klt-v]" . Eq. 6.2.

A wavelet transform estimates the exponent ¢ if that wavelet has # > ¢ vanishing moments:

[Pfy@dr=0 for 0O<ksn.

A wavelet with z vanishing moments is orthogonal to polynomials of degree n - 1. Since o
< n, the polynomial p, has degree at most » - 1. Therefore:

oo 1 _
Wp, (u,5) = J”v(’)'j’;‘”(t_s_u)d‘ =0

and since f = p, +¢,,
Wf(u,s) = We, (u,s).

It also follows that a wavelet with n vanishing moments can be written as the #® order
derivative of a function 6. Fig. 6.4 below shows a wavelet transform of the radar signal of

Fig. 6.1 calculated with y =—@, where 6 is a Gaussian. The resulting Wf{u,s) is the
derivative of f averaged in the neighborhood of u with a Gaussian kernel dilated by s.

18



It is instructive to continue the analysis beyond the first derivative, due to the

? )
2ﬂ2:|.1f f=f*g, and f, is

uniformly Lipshitz ccon [V — A,V + k], then there exists A such that:

following theorem: Let y = (-1)"6" with 0(¢) = )LExp[-—

2 \"5
Y(u,s) € [v—hv+h]x R, IWf(u,s)IsAs"“""(1+73%) ,

where g is a Gaussian variance of ¢°:

1 P
)= Exp| ——|.
8(1) \2mo XP[ 20'2]
Fig. 6.5 below shows a wavelet transform of the radar signal of Fig. 6.1 calculated

with ¥ =—6", where 6 is a Gaussian. Essentially, the above theorem describes how the
wavelet ransform decay relates to the amount of diffusion of a singularity. The difference
between the analyses offered by Fig. 6.4 and 6.5 reflects the differences in the smoothness
of the decay of transitions in the signal. These differences reflect variations in the signal
which can be infinitely continuously differentiable.

Gaussian Differential: Tgt:l,S5ige#0001.Az:-2%.9899997,A1213.80999994 . e . .
. v - v r . Gaussian Di ial: Tgt:1,sig ~AZ1-28.9899997,A1:13.80999994

VI

o

@

N

A ~

o 25 50 75 100 125 150 178 [ 25 50 s 100

125 150 178
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Causclan Differentialr  TGL1l,S4ig1M0001,A21-20.9899987,41113.80999904

Fig. 6.4. Analysis of Radar example with Gaussian differential wavelet yv=-0.

i ial: 21,Sigs Arz-2¢ 7.A1:213. N c .
Ganssian 2nd Diff ial: Tgt:1,sig 1.A22-2 » Gaussian 2ud Differentisl; Tgt:i,S$igi$0001,Az:~24.9699937,01:13.5099939%
VV \Vj \/

s .
6}

s | 4
2 <

) 23 s0 73 100 125 150 17 0 25 50 s 100

125 130 178
A. B.

Caussimm g Dutferwntials  Tgtil.Eigreo00 Aze-26.9099997.A1113.0099959¢

C.
Fig. 6.5. Analysis of Radar example with Gaussian 2nd differential wavelet i = —0".

6.3 Spectrogram

The windowed Fourier transform requires a real and symmetric window g(z) =
8(-t), which is translated by 4 and modulated at the frequency &:
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8. () = Explitt]g(t~u).

It can be normalized ligll = 1, so that Ilgu,EH =1forany (u,€) € R%. The resulting windowed
Fourier transform f € I(R) is:

Sfw.9 =(f.8,:)= Tf(r)g(r — w)Exp[-&ilds,

also known as the short time Fourier Transform.

An energy density, called a spectrogram, P,, can be defined:

2

Pof &) =|Sfw.&

2= j f)g(t —u)Exp[—i&t]dt

Fig. 6.6 is the spectrogram of the linear chirp shown in Fig 6.2. Fig. 6.7 is the
spectrogram of the radar signal example of Fig. 6.1. It may be seen that the spectrogram
can pick out well the onset and offset of the various modulations in the signal. However,
due to the fact that the window is constant (even although the modulated frequency of the
kernel is changing), the spectrogram provides a biased representation of the signal as the
sampling window excludes the influence of signal components outside the unchanging
windowed “box”. The spectrogram is thus not an optimum representation of signals and
future work will demonstrate how to amend these methods to obtain wavelet
representations from a similar commencement.

spectrogram; Linear Chirp Spectrogram; Linear Chirp

30

25| K

20}

15¢

10
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Spectrogrm; Lineer Chirp

C.
Fig. 6.6. Spectrogram or energy density of a linear chirp.

Spectrogram:  Tgt:l,Sig:#0001,AZ:-24.9899997,21:13.80999994 Spectrogram; Tgtil,Sigi#0001,A2:-24.9899997,A1:13.80999998

“I "t U
L
17.5 @
15 1s 0 O
12.5
¢
10
10
7.5}
H
s
2.5}
0 " " . -
[ 25 s0 75 100 125 150 175 o 125 150 175

Fig. 6.7. Spectrogram or energy density of radar signal example.

7.0 Zak Transform.

The action of the Zak Transform was investigated using a radar return signal
exemplar with variance of the Zak summing variable k. It was shown that discrimination
capability of fine structure is lost as the range of k increases. In order to investigate
improvements in discrimination capability, the Zak transform was performed not on the
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radar exemplar but on the radar exemplar after Gabor analysis with kernels of various
sizes. It was shown that there are distinctive patterns for each of the kernels used.
Therefore a radar return signal can be analyzed into a 4-dimensional pattern signature when
the results of the analysis patterns of multiple kernels are summed. This method holds
promise for increasing fine discrimination capability.

7.1 Zak Transform Analysis
The Zak transform! of a function f € I*(R) is:

Zf(t,0) = F(t,0) = ¥ f@+ D Exp2niko], (1,0) e RxR

keZ

and satisfies the quasiperiodicity relations:
Zf (1 +1,0) = Exp[-2niw)Zf (t,0) and Zf(t,0+1) = Zf(1,w).
Therefore the values of the Zak transform are represented on the cube:
2 =[0,1)x[0.1),

and the transform is a unitary mapping of I*(X) onto I*(Q), where:
9 5 1/2
12(0) = {F IF], = (HQ]F(I,a))l dzda)) < oo}.

The action of the Zak transform on a Gabor system {gm} constructed witha = b =
1is:
Z(g,,,.)(t,0) = Exp[2mimt|Exp[27inw]Zg(t, @),

but Zg(t,w) =1 for (t,w) € Q. Therefore the Zak transform maps the orthonormal basis
{8,...} for I*(R) onto the orthonormal basis { Exp[27imt)Exp[2ninw]} for [2(Q).

7.2 Relation of Zak Transform to Gabor Transform

The signal, f{z), is represented in a Gabor expansion as:

! Daubechies, 1., Grossman, A. & Meyer, Y. Painless nonorthogonal expansions. J. Math. Phys., 217,
1271-1283, 1986;

Daubechies, 1., The wavelet transform, time-frequency localaization and signal analysis. JEEE Trans. Info.
Theory, 36, 961-1005, 1990;

Heil, C. & Walnut, D., Continuous and discrete wavelet transforms. SIAM Review, 31, 628-666, 1989;
Janssen, A.J.E.M., Bargmann transform, Zak transform, and coherent states. J. Math. Phys., 23, 720-731,
1982;

Janssen, A.J.E.M., The Zak transform: A signal transform for sampled time-continuous signals. Philips J.
Res., 43, 23-69, 1988;

Zak, J., Lattice operators in crystals for Bravais and reciprocal vectors. Phys. Rev. B, 12, 3023-3026, 1975.
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@& =Y a,,g(t—mT)Exp|i2nkUt],
m k

where the variable m is used in connection with a time shift, the variable k in connection
with a frequency shift, and g(z) is the envelope of the elementary signal - and conceived in
this case as the synthesis window?. Thus the Gabor expansion is the representation of a
signal as the superposition of elementary packet signals, and the Gabor coefficients Q.
represent the complex amplitude of a packet at time position mT and frequency kU.

With an analysis window, Y1), corresponding to the synthesis window, g(t), the
Gabor coefficients, a,,, are determined by means of the Gabor transform:

a,, = [ F@)Y" (¢ = mT) Exp|-i27kUt r.

Alternatively, the Gabor transform can be considered as a sampled version of the
windowed Fourier transform W(t,u) of the signal f{1):

W,(t,u)= [ 2 )y" (¢ ~0)Expl—-i2mur Jat ,

on the rectangular lattice (t = mT, u =kU): a,, = W{mT kU).
There are three sampling cases of note:

(1) Critical Sampling - UT = 1 - for which there exists a unique relationship between the

synthesis window, g(z), and the analysis window, Y1), and a synthesis window can be
uniquely determined from a given analysis window. In the case of critical sampling, the
Gabor signal expansion is related to the degrees of freedom of the signal. If a signal f{1) is
limited to the time interval || < 0.5 a and its Fourier transform to the frequency interval

|u| < 0.5 b, the number of degrees of freedom equals the number of Gabor coefficients in
the time-frequency area ab, which is equal to the time-bandwidth product ab. In the case of
critical sampling, the representation is not always stable. This instability is expressed
formally by the Balian Low Theorem?. The stability problem can be overcome with
multiwindows. A Gabor system is not only a frame (see below), but is also an exact Jframe
(see below) if UT = 1.

(2) Oversampling - UT < 1 - for which such a unique relationship does not exist and there
is no unique relationship between the synthesis window and the analysis window. A Gabor
system is a frame, but not an exact frame when U7<1.

(3) Undersampling - UT>1 - for which the sequence of representation functions is
incomplete and therefore does not constitute a frame®. A Gabor system is incomplete and
not a frame when UT>1.

The Fourier transform of the expansion coefficients is:

a&.m = (Fa)&,m =Y, a,,Exp[-i2n(mn - k&),
m k

2 Bastiaans, M.J., Gabor’s expansion of a signal into Gaussian elementary signals. Proc. IEEE, 68, 538-
539, 1980.

3 Daubechies, 1., The wavelet transform, time-frequency localization and signal analysis. JEEE Trans. Info.
Theory, 36, 961-1005, 1990.
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and it can be shown that in the case of integer oversampling, i.e., I/U = pT, that*:

a(&.m) = pTy. f(&pT + kpT) Exp[—i27k(pT)(npU))]
k

X [Z Y(EpT +[kp — m]T ) Exp[~i2 7 (kp — m)T (npU ]:I
Defining the Zak transform as:

Z,(t.u;A) = Y, f(t +mA)Exp[~i2mmAul,

then the previous equation can be expressed using the Zak transform twice, with
t=8pT, u=npU, A=pT forthef{t) expression and t=ET, u=mnpU, A=T for

the Y(z) expression. In terms of this Zak transform, the Fourier transform on the expansion
coefficients is:

a(&,m) = pTZ(&T,npU; pT)Z, (EpT,npU;T).

7.3 Balian-Low Theorem

We use the following definitions:

1/2
I71, = U| f (z)|2dt) for the L*-norm of a complex-valued function £, or the energy of f,
I? being the space of all functions with finite energy.
(f.8)= [ f(t)g"(t)dt is an inner product on I*(R).

A sequence {f,} of functions in I*(R) is orthonormal if:

L ifk=1

{fof) =00 = {o, if k=l

A sequence {f,} is a basis for I*(R) if

Vf e [(R), 3 unique scalars ¢, (f) such that f= ch( F)f., where the basis elements
k

are: ¢,(f) = (f, f,)- For an orthonormal basis:
Vf e '®R), f=Y(f.f)

Plancherel’s formula gives that the energy of fis related to the energy of the coefficients:

4 Bastiaans, M.J., Gabor’s signal expansion in optics. pp. 427-451 in Feichinger, H.G. & Strohmer, T.,
(Ed.s) Gabor Analysis and Algorithms, Birkh#user, Boston, 1998.
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vf e @), I =2[r AN
k -
A sequence { f,,} is a frame if there exists A,B > 0 (the frame bounds) so that:

vie 2@, Al < SN7A) < Bl

Therefore for a frame the energy | f] Ilz of f is equivalent or related to the coefficient energy
S|(f. %) - 1 A =B, then the frame is righr.
k

For any frame { fk} there is a dual frame {f }so that:

;Uﬂﬁ

If the frame is a basis then ¢, = <fﬁ> minimizes the energy Z|ck|2.

k
A frame can be, but need not be, a basis. If a frame is a basis, then it is exact. A
frame { fk} is exact if there is no single element f, which is deleted. A frame is a basis, if

and only if, it is exact. Therefore an exact frame satisfies both the frame bound formula,
above, as well as unzquely representing a function fin terms of frame elements, f» or dual

frame elements, f,.
A Gabor system {gmb,m} is defined by:

Vie LX), f=X(f.5,

Gmb na(?) = Exp[27timbt]g(z — na).
With these definitions, the Balian Low Theorem (BLT ) is:

Let {g,,,.,. = Exp[2mimbt]g(z— na)}m,nez with a,b > and ab =1 (i.e., it is an exact frame).
As this Gabor system is an exact frame for I2(R), then

(T|tg(t)|2dtJ(Thg?(y)de] =

or
@B, = +=

Benedetto et al® point out that the BLT maximizes the classical uncertainty principle, which
is:

Let (25,7,) € R x R, then

5 Benedetto, J.J., Heil, C. & Walnut, D.F., Gabor systems and the Balian-Low theorem. pp. 85-122 in
Feichtinger, H.G. and Strohmer, T. (Ed.s) Gabor Analysis and Algorithms: Theory and Applications,
Birkhéuser, Boston, 1998.
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¥f e L), Ifl; < 4a(t- )@l | - vo)Fon),

The crucial observation’ is that if a Gabor system {gmb,m} forms an exact frame, the right

side of inequality is infinite when f is replaced by g. Essentially, the BLT states that an
exact frame is a filter set of sampling windows with an infinite time-bandwidth product.
Conversely, the uncertainty product states that there is a minimum time-bandwidth product
for sampling windows. Therefore the exact frame Gabor system can be used to sample
signals of any size time-bandwidth product, but there is a minimum time-bandwidth
product into which any maximum time-bandwidth product can be analyzed. The condition
ab =1 can thus be interpreted as a Nyquist criterion.

7.4 Exemplars

The radar return signal exemplar is shown in Fig. 7.1 (top), together with Gabor
analyzing functions, g,,, forn=1,2and 5. Fig.s 7.2, 7.3, 7.4 and 7.5 show the pattern
analysis of the radar exemplar for the Zak transform variable k = 1 t0 5, 1 to0 10, 1 to 15
and 1 to 177. It can be seen that discrimination capability of fine structure is lost as the
range of k increases. Thus, there is a loss of discriminated fine structure in the progression
from Fig. 7.2 through to Fig. 7.5.

In order to investigate improving discrimination capability, the Zak transform was
performed not on the radar exemplar but on the radar exemplar after Gabor analysis with
kernels of various sizes. Fig.s 7.6, 7.7 and 7.8 show the results. Fig. 7.6 is the Zak
transform of the radar exemplar after filtering with the smallest Gabor analyzing kernel - A
of Fig. 7.1; Fig. 7.7 uses the next largest - B of Fig. 7.2; and Fig. 7.8 uses the largest - C
of Fig. 7.1. It can be seen that there are distinctive patterns for each of the kernels.
Therefore a radar return signal - such as the exemplar - can be analyzed into a 4-

dimensional pattern signature when the results of the analysis patterns of multiple kernels
are summed.

Tgb:1,$ig:$¥0001 ,AZ2:-28.9899997,41:13.8099999¢

25 S0 75 100 125 150 175
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Fig. 7.1. (Top) Exemplar of a radar signal used in the anal
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Zak Transform, ¥ =

Tgt:l,5ig:#0001 ,A2:-28.9699997,41:13.8099999¢

C.
Fig. 6.2. Zak transform of radar signal exemplar, fork=1to 5.

zZak Transform, k = 10: Tgt:l,Sig:#0001 ,AZ:-24.9899997,A1:13.

Zak form, k = 10; Tgt:l,$iguK0001,42:-24.9899997,41:13.8099999%
90 -_/ \/v \/ v
30
20
10t
] 25 50 75 100 125 150 175 0 25 50 75 100 125 150 175
A. .
Zak Transform, k = 10; Tgt:,Sig Aze28. Al:13,

C.
Fig. 7.3. Zak Transform for k = 1 to 10.
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Zak Transform, k = 15: Tgt:l,S5ig:#0001,A2:-24.9899997,41:13 Zak i, % = 15: Tgb:l.Sigr#0001,A2:-24.9899997,A1:13.8099999%
a0 a0 ~s v '\/ ~r v o
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Zak Transform, k x 15;  Tgt:l,$ig:f0001 ,AZ:-24.9899997,A11:13.8099999¢

C.
Fig. 7.4. Zak Transform for k= 1 to 15.

Zak Transform. kX = 177; Tgt:l,Sig:#0001,A2:-2¢.9899997,A1:13.8099999¢ 2ak Trankform, k - 177; Tgt:l,5ig:#0001,A2:-2¢.0899997.A1:13.8099999¢
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2ak Trancform, k o 177;  Tgt:l,Sigu#0001,Az:-24.9899997,A1:13.80999998

Fig. 7.5. Zak Transform for £ = 1 to 177.

Zak Transform of g(mm), M = 1, k = 5) DGL1l,SigIKO001,AZE-24.9899997,
Al:13.0099999% Zak Transform of g(mm), m = 1, k = 377; TgLil,5ig:#0001,02:~24.9899997,
Al

== »%@@QOBQ
“ Tl 0 o |

Zak rransform of g(mm), = 1, k = 177;  2gt:l,SigiF0001,Az:-24.9899997,
A1:13.8099999¢
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Fig. 7.6. Zak Transform of g(m,n), n = 1 (Bottom right), k = 177.
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Zak Tranaform of g(mm), nx 2, k = S; Tgt:l,3ig:$0001 Az

~29.9095997, Zak Transtorw of g(m,m), n » 2, k = 177; Pgr:l,S1GR0003 . AT: 269899997,
Al:13.8099999% A1:13,8099999¢
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Fig. 7.7. Zak Transform of g(m,n), n = 2 (Bottom right), k = 5.
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Zak Transform of g(mm). m = 5, k = 57 Tgb:l.5igrE0001,Az1-24.9888597,

A1:13.8099599¢
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Fig. 7.8. Zak Transform of g(m,n), n =5 (bottom right), k= 177.
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8.0 Adaptive Methods

We addressed new methods for achieving discrimination of both frequency-dependent
aspects of the target and time-dependent scattering centers. The Adaptive Gabor
Representation (AGR) was used to analyze a radar signal return in two forms: the functions
were either varying Q or constant Q. We found the constant Q form appears optimum.
Frequency hopping signals as well as monocycle pulses were analyzed with the AGR and
the Combined Wigner-Ville Distribution of the AGR calculated. It was shown that with all
frequency components combined the frequency components of the signal can be identified,
but not the pulse. However, when the Combined Wigner-Ville representation of the AGR
is calculated using only the high frequency components of the latter, it was seen that the
monocycle can be detected. Thus, these methods seems entirely appropriate for detecting
the frequency-dependent and the time-dependent (transient) scattering centers of targets.

8.1 Adaptive Gabor Representation (AGR)S

The adaptive signal expansion is defined:
s@0)=Y B,h (1),
p
with the coefficients defined by:

B, = (s,h,,).
The aim is to find A,(z) which is most similar to S,(1), i.e.,

2

B[ = rr}sszp(t)hp ®) . Stepl.

Residuals are defined by:
S, () =5,(2)~ Bh,(1). Step 2.
If the functions, h,(2), have unit energy:
2
oof =1
then the residual energy is:

s, @l =k, 0f |5

6 Qian, S., Chen, D. & Chen, K., Signal approximation via data-adaptive normalized Gaussian functions
and its applications for speech processing. Proc. ICASSP-92, San Francisco, CA March 23-26,
1992, pp. 141-144.
Qian, S. & Chen, D., Signal representation using adaptive normalized Gaussian functions. Signal
Processing, 36, No 1, 1-11, March, 1994,
Mallat, S. & Zhang, Z., Matching pursuit with time-frequency dictionaries. IEEE Trans. Signal
Processing 41, 3397-3415, 1993.
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Step 1 is repeated to find b (z) as a match to 5,(¢), then Step 2 is repeated and so on, as the
residual signal converges to zero. It should be noted that, unlike' the regular Gabor

expansion, as well as wavelets, the set {kp (t)} will never be complete in L,, even if the

residual converges to zero, because each set of adaptive elementary functions is unique to a
particular signal.

As
se)P = zolB,,F

and as
1 2
o= [[wvp, ¢.earde = |p,of =1,
the Adaptive Spectrogram (AS) can be defined as:

AS(,0) = Y |B,['WVD, (1),
P

where it should be noted that the summation is over rows.

The AS not only does not contain the cross-term interference of the Wigner-Ville
distribution, it also satisfies the energy relation:

b = [[ 4s6.0rdde.

The choice of h (1) is completely arbitrary. Following convention’, we choose the
Gabor-type functions:

hp(t) = (%)l " exp[——O;—” (z —1, )2]exp[ifopt],

where

so that:

7 Qian, S. & Chen, D., Joint Time-Frequency Analysis, Prentice-Hall, New York, 1996.
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The Adaptive Gabor Representation (AGR) is then:

s(t) = zpprhp(z) = }PL Bp(% )1/4 exp[—%(t -1, )Z]exp[ifoP t]

An important property of the AGR is that, unlike the Gabor expansion, for which the
analysis and synthesis functions are not identical, the AGR has the same analysis and
synthesis functions. The adaptive coefficients, B,, are computed as follows:

B, =[5,k (1)1 = (ﬁ)szp(z)exp[—%(z— 5, )2]exp[—mpz]dz

y/4

The AS can then be defined as:

AS@t,0) = 22|Bp|2 expl:—{ap (t -1, )2 + Ezl— (w -0, )2H ,

14

where again it should be noted that this is the summation of the Wigner-Ville distribution
OVET TOWS.

8.3 Wigner-Ville of the AGR.

The Wigner-Ville joint time-frequency density function of the adaptive Gabor
functions is:

2
WVD, (1,0) = 26xpl:—{ap(t —1)" + ((D—;“Q-H

p

Testing the above definitions, the AGR was calculated of the representative radar
return signal shown in Fig. 8.1. Two protocols were tried (Fig.s 8.2 and 8.3). In the first
(Fig. 8.2) the AGR was calculated using 5 frequencies, 5 modulating envelope widths,
ie., it is not a wavelet representation. The center frequency is set, then 5 modulating
envelopes are applied in order to ascertain the maximum. In the second (Fig. 8.3) the AGR
was calculated using a wavelet representation in which changing the center frequency
changes the bandwidth, both temporal and frequency. Then the succeeding analysis is
based on the residual. There is indication that the Gabor wavelet (Fig. 8.3) appears to be
the optimum.

The frequency hopping signal (Fig. 8.4) was analyzed using the AGR. Fig. 8.5
shows that the AGR can pick out the individual signal frequency components. Fig.s 8.6
and 8.7 shows the full AGR with bandwidths 2 x and 6 x the Gabor wavelet bandwidth. At
6 x (Fig. 8.7) there is less precise timing identification.

Next, a frequency hopping signal with a high frequency monocycle was analyzed
(Fig. 8.8). The AGR is shown in Fig. 8.9 and it can be seen that both the frequency and
the pulse components can be identified. The Combined Wigner-Ville of the AGR of Fig
8.9 is shown in Fig. 8.10. It can be seen that the frequency components of the Fig. 8.8
signal can be identified, but not the pulse. However, when the Combined Wigner-Ville
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representation of the AGR is calculated using only the high frequency components of the
latter, it is seen that the monocycle can be detected.

Tgt:1,5ig:#0001 Az:-24.9899997,31:13.80999994

0.2

25 S0 75 100 125 150 175

Fig. 8.1. Representative radar return signal.

S X 5 Adiptive Gabor Wavelet Tguil,sigreon0) ,AZ$-24.9899997,A1113.80999998 5 X § Adiptive Gabor ¥avelet TQLil,Sigi#O00L,AZE-21,9899997,A1113.8099999%

, T
I V& OM
I O ‘0 \ .’

!

;. |

, "ﬂf [n\ m

100

S x $ adaptive Gabor Wavelet Tgt:1,Sig:#0001 (AZI-24.9899997,11:13.8099993%

Fig. 8.2. Adaptive Gabor Representation (AGR) of the representative radar signal of Fig. 8.1. - 5
frequencies, 5 modulating envelope widths. This is not a wavelet representation. The center frequency is set,
then 5 modulating envelopes are applied in order 1o ascertain the maximum.
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S x 3 Adaptive Gabor Wavelel Ttil.Cign@0c0).021-24.9859997.241:23.80935394 S X $ Adaptive Gabor Wavelet TOE11.8igi1#0001 . 021-24.9899937,21113. 40999991

s

Fig. 8.3. Adaptive Gabor Representation (AGR) of the representative radar return signal of Fig. 8.1. This is
a wavelet representation in which changing the center frequency changes the bandwidth both temporal and
frequency. Then the succeeding analysis is based on the residual. As there seems little difference between

this method and the preceding, the Gabor wavelet appears to be the optimum.
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Fig. 8.4. Representative frequency hopping signal.
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Fig. 8.5. Individual frequency components of frequency hopping signal identified with Adaptive Gabor
Functions (2 x envelope).
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Adaptive @abor Wavelet Frequency Nopping Signal

Adaptive Gabor Wavelet Frequency Xopping signal

0 25 S0 75 100 125 150 178 ] 25 50 7?5 100 125 150 175

A B

Fig. 8.6. Adaptive Gabor Representation of the frequency hopping signal with 6 x the bandwidth of the
Gabor wavelet..

40



Adaptive Gabor Wavelet Frequency Hopping Signal adaptive Gabor Wavelet Irequency Mopping Sigmal

25 s0 75 100 125 150 175 0 23 S0 7S 100 123 150 175

Fig. 8.7. Same as in Fig. 8.6 but with 6 x the bandwidth of the Gabor wavelet.
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Fig. 8.8. Representative frequency hopping signal with a high frequency monocycle.
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Adaptive Gabor Wavelet Frequency Mopping Signals Pulse Adaptive Gabor Wavelet Frequemcy Nopping Signal + Pulse

u

L

0 28 50 75 100 128 150 17s 0 25 50 75 100 128 150

Fig. 8.9 Adaptive Gabor Representation of the frequency hopping signal with monocycle. Both the
frequency and the pulse components of Fig. 8.8 can be identified.
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Combined Wigner-¥ille Function, PulseFregHop No 1 Combined Wigner-ville Fumction, PulseFregtop Xo 1

W~

15

° 25 50 s 100 128 150 375 0 25 50 75 100 128 150

Combined Wigner-¥ille Function, PulseFregHop, No 1

Fig. 8.10 The combined Wigner-Ville of the AGR of the frequency hop signal with monocycle. It can be

seen that the frequency components of the Fig. 8.8 signal can be identified, but not the pulse.
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Combined Wigmer-ville runctiom, rulsefreop - Migh rrequ. Comp.

Cowbined Wigner-ville Funotion, PulsoFregiop -  Xigh Freq. Cowp.

20 . \\E,y
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¢ 25 50 75 100 125 150 175 L] 25 50 75 100

Combined Wigner-ville Functiom, PulseFregiop - Migh Frequ. comp.

Fig. 8.11 The Combined Wigner-Ville representation of the Adaptive Gabor representation of the frequency
hopping plus monocycle signal, using the high frequency components of the latter. It is seen that the
monocycle pulse can be detected.

9.0 The Constant Q Gabor Wavelet

The Adaptive Gabor Representation (AGR) and the Combined and Single Wigner-Ville
Distribution of the AGR were calculated for frequency hopping signals, pulses and radar
return signals The AGR requires finding the optimum wavelet center frequency, optimum
dwell and optimum modulating envelope. The hypothesis under test was that whereas the

AGR has been viewed as an optimization with respect to three variables: o, t, and f,, with
@, setting the envelope size independently of the other two variables, use of a constant o

Gabor wavelet would permit an efficient optimization using only one variable - o, - with
the other signal parameters functions of that one variable. It is shown that the constant Q
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Gabor wavelet with f;.z, =Af.At = 1/2, is optimum and that only one variable is required
for optimization.

9.0.1 Adaptive Gabor Representation (AGR)3

The adaptive signal expansion is defined:
s(t)=Y Bk, (1),
p
with the coefficients defined by:

B, = (s,h,,).
The aim is to find A, (z) which is most similar to s,(z), i.e.,
2

B = n}‘?szP(t)hp @) . Stepl.

Residuals are defined by:
5, =s,0)~B,h(1).  Step2.
If the functions, hp (2), have unit energy:

ol =1,

then the residual energy is:

s =ls,0f |8,

Step 1 is repeated to find A, (¢) as a match to s,(z), then Step 2 is repeated and so on, as the
residual signal converges to zero. It should be noted that, unlike the regular Gabor

expansion, as well as wavelets, the set {hp(t)} will never be complete in L,, even if the

residual converges to zero, because each set of adaptive elementary functions is unique to a
particular signal.

As

8 Qian, S., Chen, D. & Chen, K., Signal approximation via data-adaptive normalized Gaussian functions

and its applications for speech processing. Proc. ICASSP-92, San Francisco, CA March 23-26,
1992, pp. 141-144,

Qian, S. & Chen, D., Signal representation using adaptive normalized Gaussian functions. Signal
Processing, 36, No 1, 1-11, March, 1994.

Mallat, S. & Zhang, Z., Matching pursuit with time-frequency dictionaries. IEEE Trans. Signal
Processing 41, 3397-3415, 1993.
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s = 3|5,

=0

and as
;lgﬂ WVD, (ro)dide =k, @ =1,
the Adaptive Spectrogram (AS) can be defined as:
AS(w) = Y |B,['WVD, (1,0),
7

where it should be noted that the summation is over rows.

The AS not only does not contain the cross-term interference of the Wigner-Ville
distribution, it also satisfies the energy relation:

Is@)| = 51-7; _U AS(t,0)dtdw .

The choice of h,(t) is completely arbitrary. Following convention®, we choose the
Gabor-type functions:

h (1) = (%]1 ; eXP[‘%(f = )2]exp[ifo,,t],

where

so that:

The Adaptive Gabor Representation (AGR) is then:

s(t) = nghp = ;BP (%’i)l ’ exp[—g—(t -1, )2]exp[if0’ t]

An important property of the AGR is that, unlike the Gabor expansion, for which the
analysis and synthesis functions are not identical, the AGR has the same analysis and
synthesis functions. The adaptive coefficients, B, are computed as follows:

® Qian, S. & Chen, D., Joint Time-F requency Analysis, Prentice-Hall, New York, 1996.
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1/4
B, = [s,(0k(dr = (%) jsp(z)exp[—%’-(r— b, )2]exp[—ifop tlar

The AS can then be defined as:

Ast0)=2Y |8, exp[—{ap (t-2,) + al— (0-0, )2H

p

where again it should be noted that this is the summation of the Wigner-Ville distribution
OVET TOWS.

9.0.2 Wigner-Ville of the AGR.

The Wigner-Ville joint time-frequency density function of the adaptive Gabor
functions is:

@,

2
WV&.P (tw)= ZCXP[—{aP(z —)Y+ ((0 (00) H
9.0.3 The Constant Q Gabor Wavelet.

In previous expositions of the AGR, the four signal variables of center frequency,
Jo» midperiod, ¢,, frequency bandwidth Af and time bandwidth, Az, are separately defined.

For example,
—_ 1 aP

with
fo = mid Af,
t, = mid At.

Obviously, this does not provide a constant Q wavelet.

However, a constant Q Gabor wavelet is achieved from the following definitions!°:

10 Barrett, T.W., Structural information theory. J. Acoust. Soc. Am., 54, 1092-1098, 1973.

47



11

to T
2a,
— 1 aP

Y71
2a,

The constant Q Gabor wavelet thus conforms to the following condition:
1
Jolo = Af.Ar = >’

and the more general condition is!!:

Joto = Af.Ar = %(2n+ 1) n=0,12,...

9.1 Numerical Tests.

The hypothesis under test was that whereas the AGR has been viewed as an
optimization with respect to three variables: &, 1, and f,, with o, setting the envelope size
independently of the other two variables, use of a constant O Gabor wavelet would permit

an efficient optimization using only one variable - @, - with the other signal parameters
functions of that one variable.

Using the frequency hopping signal plus a pulse shown in Fig. 9.1, a non-constant
Q analysis was calculated with 4 f, s and 1 original signal plus 4 residuals - Fig. 9.2. The
Combined Wigner-Ville distribution picks out the frequency components of the signal -

11 Barrett, T.W., On vibrating strings and information theory. J. Sound & Vibration, 20, 407-412, 1972a.
, Conservation of information. Acustica, 27, 44-47, 1972b.

................. » The definition precedence of signal parameters: sequential versus simultaneous information.
Acustica, 27, 90-93, 1972¢.

» The conceptual basis of two information theories - a reply to some criticisms. J. Sound &
Vibration, 25, 638-642, 1972d.

» Analytical information theory. Acustica, 29, 65-67, 1973.

> Nonlinear analysis and structural information theory: a comparison of mathematical and
physical derivations. Acustica, 33, 149-165, 1975.

» On linearizing nonlinear systems. J. Sound & Vibration, 39, 265-268, 1975.

» Linearity in secular systems: four parameter superposition. J. Sound & Vibration, 41, 259-
261, 1975.

» Information measurement I. On Maximum entropy conditions applied to elementary
signals. Acustica, 35, 80-85, 1975.

» Information measurement II. On minimum conditions of energy order applied to
elementary signals. Acustica, 36, 282-286, 1975.

» Structural information theory of sound. Acustica, 36, 271-281, 1976.
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Fig. 9.3; and the individual Wigner-Ville distributions pick out the individual signal
frequency components - Fig.s 9.4-9.7.

Calculating the AGR of the frequency components of the signal-but with increasing
modulating envelope, Fig. 9.8, revealed that the constant Q Gabor wavelet provided more
detail than did longer envelopes and did not overlap the temporal length of the frequency
components in the signal. This result established that a constant O Gabor wavelets are
optimum filters.

Using high frequency Gabor wavelets, the pulse was extracted from the signal
shown in Fig. 9.1 - Fig. 9.9; and using the Combined Wigner-Ville distribution
represented in Fig. 9.10.

Similar calculations were then performed on the representative radar return signal -
Fig. 9.11. The AGR was calculated - Fig. 9.12 - and the Combined Wigner-Ville
distribution is shown in Figs. 9.13(I) and 9.13(II) at two levels of magnification. Fig. 9.14
shows the Combined WYV for the high frequency components of the signal and Figs. 9.15 -
9.18 show the WV for decreasing frequency components of the signal.

-2

Fig. 9.1. Frequency Hopping Signal with Pulse.
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t x ¢ Adaptive Gabor Wavelet, Frequency Mopping Signal + Pulse

Fig. 9.2. Adaptive Gabor-Wavelet Transform of frequency hopping signal with pulse signal of Fig. 9.1. 4
fo s were used and 1 original signal plus 4 residuals.
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Ccombined Wigner-ville runction, S x 6 adaptive gabor Wavelet, Frequency
Hopping Signal + Pulse

Fig. 9.3. Combined Wigner-Ville Distribution Transform of the 4 x 4 Adaptive Gabor-Wavelet Transform
of Fig. 9.2

#1 Wigner-¥ille Yunction, & x ¢ Adaptive Gabor Wavelet. Trequency
nop;nmg signal + rnlse' ® ‘ L2 V-\g-r-:z}h !\:ﬂ::;:, ¢ x & hdaptive Gabor Wavelet, Fraguemcy

YT Wu”ﬁ
b a0 auoaﬂ“qb

{00
0Ga0Merg |

I

100 123 150 173

B

o}

25

20

w

fd-\\\\ "

o 23

51



#1 Higner-ville Function, ¢ x & Adaptive Gabor Wavelet, Frequency
Hopping Signal + Pulse
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Fig. 9.4. Single Wigner-Ville Distribution Transform of the 1st part of the 4 x 4 Adaptive Gabor-Wavelet
Transform of Fig. 9.2.
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¥2 Wigner-¥ille Function, & x ¢ Adaptive Gabor Wavelet, Frequency
Hopping Signal + Pulse

Fig. 9.5. Single Wigner-Ville Distribution Transform of the 2nd part of the 4 x 4 Adaptive Gabor-Wavelet
Transform of Fig. 9.2.
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#3 Wigner-Ville Function, 4 x ¢ Adaptive Gabor Wavelet, Frequency
Hopping Signal + Pulse

Fig. 9.6. Single Wigner-Ville Distribution Transform of the 3rd part of the 4 x 4 Adaptive Gabor-Wavelet
Transform of Fig. 9.2.
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#4 Wigner-Ville Function, ¢ x & iadaptive Gabor Wavelet, Frequency
Kopping Signal + Pulse

Fig. 9.7. Single Wigner-Ville Distribution Transform of the 3rd part of the 4 x 4 Adaptive Gabor-Wavelet
Transform of Fig. 9.2.
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Fig. 9.8. Adaptive Gabor Wavelet Transform of parts of signal of Fig. 9.1, with increasing modulating
envelope. .
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(OfF) 13 X ¢ Adaptive Gabor Mavelet, Frequency Mopping Signal + Pulse
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Fig. 9.9. Adaptive Gabor Wavelet transform using high frequency components of the signal of Fig. 9.1.
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Combined Higuer-ville Fumotion, 13 x 4 Adaptive Gabor Havelet, Frequenoy
Hopping Signal « Pulse

Wigner-ville Function, 13 x 4 Adaptive Gabor Wavelet, Trequency
Hopping $igual + Pulse
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Combined Wigner-¥ille Functiom, 13 x & hdaptive Gabor Wavelet, Frequency
Hopping signal + Pulse

Fig. 9.10. Combined Wigner-Ville transform of the high frequency components of the frequency hopping
signal plus pulse of Fig. 9.1.
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Fig. 9.11. Representative radar return signal.
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S x 3 hdaptiva Gabor Wavalet Tgt:l,£1g:$0001,A2:-20.9899907,A1:13.8099999¢ s

X 5 Adaptive Gabor Wavalet Tyt:l,S1gi0001,Ax3-26.9999997,02:13. 80999994

Ste R ..

»

A B

Fig. 9.12. Adaptive Gabor-Wavelet Transform of representative signal of Fig. 9.11. 5 f, s were used and 1
original signal plus 4 residuals.
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Combined Wignex-¥ille Function, 5 x 5 Adaptive Gabor Wavelet Tgt:l,sig:
#0001 A2:~24.9899997 ,A1:13.80899934
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combined Wigner-ville Function, 5 x 5 adaptive Gabor Wavelet Tgt:1 Sigs
#0001 ,k2:-2¢.9859997,41:13.80999994

Fig. 9.13(I). Combined Wigner-Ville Distribution Transform of the 5 x 5 Adaptive Gabor-Wavelet
Transform of Fig. 9.2.
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Fig. 9.13(I). Combined Wigner-Ville Distribution Transform of the 5 x 5 Adaptive Gabor-Wavelet
Transform of Fig. 9.2. Same as Fig. 9.13(I) but x 5 magnification.

60



#5 Wigner-Yille Function, S x 5 Adaptive Cabor Wavelet Tgtil, Sig:#0001,
R1:i-2%.9899957,42:15,.00999994 #5 Migner-¥ille Functaon, 5 x S Adaptave Gabor Wavelet Tgtil Sigieoo0],
AXI=26.9899997,41213.8099999¢

“

#5 Wigner-¥ille Function, § x S idaptive Gabox Havelet Tgt:l,Sig:#0001,
AZ:~28.9899997,A1:13.8099999¢

Fig. 9.14. Wigner-Ville Distribution Transform of the 5th level (highest frequency components) x 5
Adaptive Gabor-Wavelet Transform of Fig. 9.2.
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#4 ¥igner-ville Function, 5 x $ Adaptive Gabor Wavelet TgL:l,.8igzdo0001,
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Fig. 9.15. Wigner-Ville Distribution Transform of the 4th level (next to highest frequency) x 5 Adaptive
Gabor-Wavelet Transform of Fig. 9.12.
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#3 ¥wigner-ville runction, $ x 5 Adsptive Gabor Wavelet Tgt:l, Sig:¥o001,
AZ:-2¢.9899997,A1:13.8099999¢

#3 Vagner-ville Function, S x 5 Adaptive Gabor Wavalat 7gt:1, Sig L0003 ,
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#3 Wigner-ville Fnuction, 5 x S Adaptive Gabor Wavelet Tgt:1,sig:=#o0001,
RZ:-2%.9699997,41:13.80999992

Fig. 9.16. Wigner-Ville Distribution Transform of the 3rd level (middle frequencies) x 5 Adaptive Gabor-
Wavelet Transform of Fig. 9.12.
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#2 wignex-ville runction, 5 x 5 Adaptive Gabor Wavelet Tgt:1,sig:soo01,
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#2 wigner-ville runction, 3 x 5 Adaptive Gabor Wavelet 1,34g1#0001
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Fig. 9.17. Wigner-Ville Distribution Transform of the 2nd level (next to lowest frequency) x 5 Adaptive
Gabor-Wavelet Transform of Fig. 9.12.
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#1 Wigner-¥ille Function, 5 x 5 adaptive Gabor Wavelet Tgt:1.Siqgigoo0l,
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Fig. 9.18. Wigner-Ville Distribution Transform of the 1st level (lowest frequency components) x 5
Adaptive Gabor-Wavelet Transform of Fig. 9.12.
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10.0 Extension of the Gabor Transform (CQOW)

We initiated investigations of wavelets based on orthogonal parabolic cylinder or
Weber functions of increasing level described by the expansions: Af. At = Joto = 12Q2n+
1), n=0,1,2,.... (i.e., Constant Q Orthogonal Weber Function Wavelets (CQOW5s)).
Using a frequency hopping and pulse test signals, these wavelets are able to detect both
resonance and pulse scattering features. Using scattergram plots between three levels of
wavelets and two scale dilations, unique features of both the test signal and radar return
signals can be demonstrated. This research is unique in two respects: using orthogonal
wavelets of different levels and in the scatterogram cross-comparison of three levels of
analysis, which can provide unique signatures for targets. In the case of the test signal of a
frequency hopping signal, plus a pulse, it is seen that discernible cyclic patterns occur
which may be correlated with the number of frequencies in the signal - four. In the case of
the radar return test signal, it is seen that recognizable helical patterns occur, which may
provide a unique signature for targets.

In previous expositions of the Gabor transform, the four signal variables of center
frequency, f,, midperiod, #,, frequency bandwidth Af and time bandwidth, Ar, are
separately defined. For example,

with

fo =mid Af,

I, = mid Az.
Obviously, this does not provide a constant Q wavelet.

However, a constant Q Gabor wavelet is achieved from the following definitions!:

5=+,

1 1
I = }—-——
32 a,

—_ laP
= 21°

a= 1L
2 o,

The constant @ Gabor wavelet thus conforms to the following condition:

1 Barrett, T.W., Structural information theory. J. Acoust. Soc. Am., 54, 1092-1098, 1973.
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1
Jfoto = Af At = 5>

A more general condition has been derived?:

foly = Af.Ar = —21-(2n+ 1) n=0,12,....

which provides a range of orthogonal wavelets.

Specifically, these wavelets are based on modulations which are Weber’s functions.
Weber’s equation is:

dz
“Fa-gIp=0,

where § is a dimensionless independent variable and A is a dimensionless eigenvalue. The
solutions to Weber’s equation are the parabolic cylinder or Weber-Hermite functions:

D (H=2"""H (——’—)ex =
n - n ‘\/'2"' p 4 H

where
dexp[-1’]
H,(t) = (-1)"exp|* | —2—
0= (1) expl*]— -
are Hermite polynomials satisfying:
2
_{1_%_ 2t£x—_2n.x =0
dt dt

and the orthogonality relationship:

2 Barrett, T.W., On vibrating strings and information theory. J. Sound & Vibration, 20, 407-412, 1972a.
, Conservation of information. Acustica, 27, 44-47, 1972b.

-------------——--, The definition precedence of signal parameters: sequential versus simultaneous information.
Acustica, 27, 90-93, 1972¢c.

» The conceptual basis of two information theories - a reply to some criticisms. J. Sound &
Vibration, 25, 638-642, 19724d.

» Analytical information theory. Acustica, 29, 65-67, 1973.

» Nonlinear analysis and structural information theory: 2 comparison of mathematical and
physical derivations. Acustica, 33, 149-165, 1975.

» On linearizing nonlinear systems. J. Sound & Vibration, 39, 265-268, 1975.

» Linearity in secular systems: four parameter superposition. J. Sound & Vibration, 41, 259-
261, 1975.

» Information measurement I. On Maximum entropy conditions applied to elementary
signals. Acustica, 35, 80-85, 1975.

, Information measurement II. On minimum conditions of energy order applied to
elementary signals. Acustica, 36, 282-286, 1975.

, Structural information theory of sound. Acustica, 36, 271-281, 1976.
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THM OH,@)exp[~1*|dt = 0 for m = n.

The Weber functions, 0°th to 6th order, are:

Weber Functions - see Fig. 10.1.
ORDER (LEVEL)
0’th order, n=0 [ ;2
2—0/2Ho(_%)exp T:—:I
1st order, n=1 1 -_t2
2‘1l2Hl(—2)CXp T:,
2nd order, n=2 t T 1
5212 Hz(—z)exp T]
3rd order, n=3 ( :_tz 1
272y L)exp —
\W2) 4] |
4th order, n=4 ( 2]
27%H, -——%)exp —;—-
Sth order, n=5 7 2
272l —)exp —
\ V2 L 4 ]
6th order, n=6 ( -2
2782, —t——]cxp ——]
\ V2 | 4

The Weber function wavelets, 0’th to 6th order, are:



Constant Q Weber Function Wavelets, see Fig. 10.2

|

ORDER (LEVEL)

=2

0’th order, n=0 -
= 012 HO(_’_)exp TI expli(4/1)]
(

22y _t_)exp Tt expli(4/3)]

1st order, n=1

2nd order, n=2 ([t -2
€X

P e exp[i(4/5)t]

\ V2
3rd order, n=3 ( —z2
22y, -z—)exp —lexp[it4/7)]
2 4
!

th O d 3 2—4 2 € _— |l I ]
Sth Ord s 16 = 2— € --_"‘ |
ordgr n=6 ._6/2H (_) Xp exp i(4/ 1 l)l]

At the 0’th order, ie., n = 0, the Weber-Hermite function is the well-known
Gaussian and the Weber Function wavelet of the 0°’th order is a unique Gabor function - a

constant Q Gabor function - due to the two uncertainty restrictions described above. This
0’th order wavelet is:

1/4

s(t) = j_ exp[—%’-’-(t—to)zjlexp[iS(t— to)]; s(f) = }Eﬁ- exp[—(2/ap)(f— fo)z]cxp[—i(f—-fo)/S:

2
h o oL
or, wi ap——-z-.

P
s0)= \/; exp[—%(’—fsz}exp[m(’ 'a’° ﬂ s(f)= \/g exp|2(a(f - 1))’ |expl-ia(f - £,)/8]

All of the Constant Q Orthogonal Weber Function Wavelets, which include the
above as the 0’th order wavelet are:

(t-—to) _(t—to)z
22y ji expl ——2 exp[i(4/(2(n+1)))(5"—’°)} n=0,12,3...

a
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Integration showed that these continuous wavelets are reasonably well compactly
supported.

10.1 Applications

Fig. 10.3 shows the test signals. The first is a frequency hopping signal with a
pulse; the second is a representative radar return. Fig.s 10.4 and 10.5 show the application
of the Constant Q Orthogonal Weber Function Wavelets (CQOW) to the two test signals for
the 0’th order through the 6th order and at two scale dilations. It can be seen that CQOWs
provide excellent detection of both signal frequencies and pulse scattering.

A new form of analysis was tried using the results of the normalized (60,0)%
coefficients. Scatterograms were calculated (Fig.s 10.6 and 10.7) for the two test signals
by parametrically plotting the coefficients for the 0’th order, st dilation or 01, the 1st
order, 1st dilation or 11, and the 2nd order, 1st dilation or 21, i.e., 01,11,21, then the 0’th
order, 2nd dilation or 02, the 1st order, 2nd dilation, or 12, and the 2nd order, 2nd
dilation, or 22, i.e., 02,12,22. These parametric plots were carried out among the orders
0’th through 6th and for 2 scale dilations.

In the case of the frequency hopping signal, plus a pulse, Fig. 10.6, it can be seen
that discernible cyclic patterns occur which may be cormrelated with the number of
frequencies in the signal - four. In the case of the radar return test signal, Fig. 10.7, it can
be seen that recognizable helical patterns occur, which may provide a unique signature for
targets.

-6 -4

0’th Order 1st Order 2nd Order

N FANWAY VAN ¢
N EUVARRVA'

2 -4

3rd Order 4th Order 5th Order

-20

6th Order

Fig. 10.1. Weber functions, 0°th to 6°th order.

70



-

0’th Order 1st Order 2nd Order

Mol
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Fig. 10.2. Wavelets based on Weber functions, 0’th to 6’th order.
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Fig. 10.3. A. Frequency Hopping plus Pulse Test Signal. B. Radar Return Test Signal.
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Fig. 10.6. Parametric plots of Oth Order, 1st Order, 2nd Order, 1st Filters (01,11,21), 2nd Filters
(02,12,22), etc. ...(42,52,62) for the Test Signal, Frequency Hopping plus Pulse.
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Fig. 10.7. Parametric plots of Oth Order, 1st Order, 2nd Order, 1st Filters (01,11,21), 2nd Filters
(02,12,22), etc. ...(42,52,62) for the Test Signal,Radar Return Signal.

10.2 Paraunitary Properties

Using a frequency hopping and pulse test signals, CQOWs wavelets are able to
detect both resonance and pulse scattering features. The characteristics of these wavelets are
based on IIF filter principles. It is customary to believe that a discrete time scaling (low
pass) wavelet is first necessary to obtain the discrete time (high pass) wavelet. Here we
show that the expansion method permits an estimate of the continuous time high pass
wavelet from the summed Fourier spectra of the expansions, n = 1, 2,... . Future work
will examine whether repeated analysis of the original signal by higher order wavelets is

equivalent to the customary method of using but one scaling function and one wavelet with
signal decimation.
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Paraunitary properties underlie not only the perfect reconstruction capabilities of
certain wavelets but the relation of the low pass (scaling) and high pass (wavelet) filters.
These properties are defined as follows3. Some definitions are necessary, which are:

If H(z) is the z-transform of h(n), then |

H(z)= Y h(n)z™

If z = exp[i @], then H(z) is the Fourier transform of Ah(n).
H(z)=[H(z)]
thatis, H(z) is the paraconjugate of H(z).

H*(x) is the complex conjugate of H(x) and H.(x) indicates that only the
coefficients are conjugated.

H7(x) denotes the transpose-conjugate of H(x).

Using the above, if H (2)H(z) = dl, for some d >0 and for all z,

then the filter has the paraunitary property. Furthermore, if E(z) is a filter analysis bank,
and R(z) is a filter synthesis bank, then the perfect reconstruction property is expressed by:

R(z) = cz *E(2).

Under the paraunitary condition, the analysis filters are then related as:

by (n)=—c(=1)"hy(L—n),

from which relation has arisen the customary observation that the discrete time high pass
filter must be obtained from the discrete time low pass filter and that knowing the
continuous time low pass filter does not permit the definition of the high pass filter -
continuous or discrete time.

10.3 Applications

Here we obtain the high pass filter in another way. The Fourier transforms of a
number of Weber functions are shown in Fig. 10.3.1. With the » = O function as the
scaling wavelet (the first shown in Fig. 10.3.1) then the higher order functions can be
viewed as approximations to the high pass wavelet. Thus the high pass wavelet can be
obtained by the inverse transform of the summation of the Fourier spectra of the series
above n = 0. Fig. 10.3.2A shows that summation for the small number of the series shown
in Fig. 10.3.1. Fig. 10.3.2B. shows the limiting extrapolation.

3 Cf. Vaidyanathan, P.P. Multirate Systems and Filter Banks, Prentice Hall, 1993;
Vetterli, M. & Kovacevic, Wavelets and Subband Coding, Prentice Hall, 1995.
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The inverse transform of Fig. 10.3.2B provides the high pass wavelet which is
shown in Fig. 3B (with the scaling function shown in Fig. 10.3.3A for cross comparison).
The low pass scaling function and the high pass wavelet were then used to analyze the
frequency hopping signal plus pulse shown in Fig. 10.3.4. Figs 10.3.5 and 10.3.6
provides the results. It can be seen that the low pass and high pass features are adequately
displayed. It is straightforward to use this scaling function and this wavelet in a muitiscale
analysis, utilizing the customary decimation procedures.

Alternatively, the signal can be analyzed, without decimation, by utilizing the
Weber functions wavelet series, n=0, 1, 2, 3, 4, 5, 6, in a Gram-Schmidt-like expansion.
Future work will examine the advantages of this approach.
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Fig. 10.3.1. Fourier transforms of Weber functions (elementary signals) for n=0, 1,2, 3,4, 5 and 6.
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Fig. 10.3.2. A. The additive Fourier transforms of the Weber functions forn= 1, 2, 3, 4, 5 and 6. B: The

projected additive Fourier transform of the Weber functions for n = 1...—eo,
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A

Fig. 10.3.3. A: The scaling (low pass) Weber function. B: the (high pass) wavelet from the inverse Fourier
transform of the Fourier spectra of Fig. 2B.
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Fig. 10.3.4. Representative frequency hopping signal plus pulse.
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Fig. 10.3.5. Wavelet transform of the frequency hopping signal plus pulse shown in Fig. 4, using the low
pass Weber function wavelet shown in Fig. 10.3.3A. A(1)-B(1)-C(1), A(2)-B(2)-C(2), A(3)-B(3)-C(3), show
the real part, the phase and modulus of the wavelet transform.
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Fig. 10.3.6. Wavelet transform of the frequency hopping signal plus pulse shown in Fig. 10.3.4, using the
high pass Weber function wavelet shown in Fig. 10.3.3B. A(1)-B(1)-C(1), A(2)-B(2)-C(2), A(3)-B(3)-C(3),
show the real part, the phase and modulus of the wavelet transform.



11.0 Instantaneous Phase

This section addresses instantaneous phase information obtainable from application
of wavelet analysis. We show that a detailed thumbprint of a complex (target return) signal
can be obtained which can be used as data supporting a detailed wavelet modulus
description of the same signal. We also show a result from calculating the differential phase
which also provides supporting data. It is also shown that there are optimum dilations for
providing correlated measures.

We also calculated the probability distribution function for the target return signal
processed with a specific dilation of the wavelet and the mutual information for two
dilations. This form of analysis also provides supporting data to the modulus thumbprint of -
the signal.

In summary, the phase information and mutual information provide excellent

supporting data to that providing by the wavelet modulus. In combination a more detailed
analysis of target information is possible.

1. Instantaneous Phase

The Weber functions are defined as extensions of the Gabor transform with the four

signal variables of center frequency, f,, midperiod, z,, frequency bandwidth Af and time
bandwidth, Az, are separately defined. For example,

A,\E@

with
fo =mid Af,
o =mid At.

Obviously, this does not provide a constant Q wavelet.

However, a constant Q Gabor wavelet is achieved from the following definitions!:

fo=1/8ap,
o |11
0 32ap’
—_ laP
Af"\/z 1’
A= 2L
2ap

1 Barreit, T.W., Structural information theory. J. Acoust. Soc. Am., 54, 1092-1098, 1973,

91



The constant Q Gabor wavelet thus conforms to the following condition:

1
.ﬁ)-to - Af.At = 5,

A more general condition has been derived?:

Joto = Af.Ar = —;—(2n+ 1) n=01,2,...

which provides a range of orthogonal wavelets.

Specifically, these wavelets are based on modulations which are Weber’s functions.
Weber’s equation 1s:

d*D
dr?

+(A-&)D =0,

where & is a dimensionless independent variable and A is a dimensionless eigenvalue. The
solutions to Weber’s equation are the parabolic cylinder or Weber-Hermite functions:

D@)=2"""H (—t—)ex =
n - n ﬁ p 4 E

where
8exp[—t2]
H,(2) = (-1)"exp|t* | —-—4
0= (1) expl ] —
are Hermite polynomials satisfying:
2
X %% =0
dt at

2 Barrett, T.W., On vibrating strings and information theory. J. Sound & Vibration, 20, 407412, 1972a.
» Conservation of information. Acustica, 27, 44-47, 1972b.

----------------- , The definition precedence of signal parameters: sequential versus simultaneous information.
Acustica, 27, 90-93, 1972c¢.

» The conceptual basis of two information theories - a reply to some criticisms. J. Sound &
Vibration, 25, 638-642, 1972d.

» Analytical information theory. Acustica, 29, 65-67, 1973.

» Nonlinear analysis and structural information theory: a comparison of mathematical and
physical derivations. Acustica, 33, 149-165, 1975.

» On linearizing nonlinear systems. J. Sound & Vibration, 39, 265-268, 1975.

, Linearity in secular systems: four parameter superposition. J. Sound & Vibration, 41, 259-
261, 1975.

» Information measurement 1. On Maximum entropy conditions applied to elementary
signals. Acustica, 35, 80-85, 1975.

» Information measurement I1. On minimum conditions of energy order applied to
elementary signals. Acustica, 36, 282-286, 1975.

, Swructural information theory of sound. Acustica, 36, 271-281, 1976.
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and the orthogonality relationship:
[H.@H, @ exp[-1*]dt = 0 for m = n.

The following analysis is based on the 0’th order (n = 0) wavelet:

-0/2 4 —t>
I[/(t) =2 Ho (TEJCXP[TJ .

The signal analyzed is the frequency hopping plus pulse signal shown in Fig. 1.
The wavelet can be viewed as an analytic signal:

(1) = s(t) +i5(z),

where §(7) is the Hilbert transform of s(z):
s=Lpy. jﬂdr,
T Yt-7

P.V. indicates that the integral is taken in the sense of the Cauchy principal value. The
instantaneous phase is then defined as:

o) = arctan@

s@)
The differential of instantaneous phase is represented by means of obtaining the

difference in phase between the phases obtained from applying the Gabor wavelet at
different dilations.

11.1 Mutual Information.

If the phases of the wavelet filtered signal are considered as » discrete random
variables, X,,...,X,, with sets of values, E,..ZE , the probability distribution for an

individual phase for a particular time in the signal and using a particular dilation of a Gabor
wavelet, X, is:

p(x)=PiX,=x] x, €&,

13

The joint probability distribution can then be defined for » variables X 12+-X, @s
p(x,,...x,).

The mutual information, /(X,,;X,), is defined as:

p(x;,.0sx,)
I(X;.5X)= ) .. ) p(x,.nx,)og-—-122"0
1 2:‘ 2:’ 1 p(x,)...p(x,)
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11.2 Applications

Fig. 11.2 shows the instantaneous phase information from application of the Oth
order Gabor wavelet to the signal of Fig. 11.1. It can be seen that a detailed thumbprint of
the frequency hopping plus impulse signal can be obtained which could be used as data
supporting a detailed wavelet modulus description of the signal. Fig. 11.3 shows the
differential phase result which also provides supporting data. Fig. 11.4 is a more detailed
single cut analysis of Fig. 11.3 and shows the fine structure correspondence to the
frequency components of the signal.

Fig. 11.5 provides 3-dimensional cross-phase plots of the data of Fig. 11.2 and
reveals the fine structural changes in phase at increasing dilations of the wavelet. Fi g 11.6 -
also provides the same information for the differential phase measurements of Fig. 11.3.
Fig.s 11.7 and 11.8 are phase-phase plots for different dilations of the wavelet for the
instantaneous and differential phase measurements. It can be seen that there are optimum
dilations for providing correlated measures.

Fig. 11.9 shows examples of a probability distribution function for the signal
processed with a specific dilation of the wavelet and the mutual information for two
dilations; and Fig. 11.10 shows the mutual information from application of the Oth order
Gabor wavelet at a number of dilations. This form of analysis also provides supporting
data to the modulus thumbprint of the signal.

In summary, the phase information and mutual information provide excellent
supporting data to that providing by the wavelet modulus. In combination a more detailed

analysis of target information is possible.

MM
TR

Fig. 11.1. Frequency Hopping plus Pulse representative signal.
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Fig. 11.3. Differential phase measurements of the signal of Fig. 11.1 using the Oth order Gabor wavelet
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Fig. 11.4. Differential phase measurements: cuts through the 3-dimensional representation of Fig. 11.3.
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Differential Phase for 4,5.6

100



Differential Phase for 7,8,9

Fig. 11.6. 3-dimensional representations of the differential instantaneous phase for 3 0-order Gabor filters,
from 1-9.
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Fig. 11.7. Plots of instantaneous phases obtained from 0’th Gabor wavelet sampling.
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Fig. 11.8. Plots of differential instantaneous phases obtained from 0’th Gabor wavelet sampling.
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12.0 Fractals and Fano Factors

This section addresses the differentiation of two target return signals using (1)
wavelet processing and (2) fractal analysis of the results of that wavelet analysis. Log-Log
plots (amplitude versus filter scale) revealed stable distributions (as opposed to
asymptotically Gaussian distribution) behavior - increasing in the case of one signal, and
decreasing in the case of the other. This is a fractal property. The computed fractional

be further explored in future months.

The fractal power relationship is that the measured value of a property Q(r) depends
on the resolution used to make the measurement with the equation:

0 = Brf(*fﬁjﬁf,i]

where B, b and q are constants and f{x) is a periodic function such that f(1+x) =fix).
In its simpler form, this relationship is:

O(r)= Br
Thus in the case of fractal data, the scaling relationship for a statistical property Q(r)

has a power law form in that Q(r) is proportional to r®, where r is the resolution. The
exponent b is related to the fractal dimension.

The two are related as follows. The fractal dimension, d, means that a number of
pieces or samples, N(r), measured at resolution r is proportional to r¢:

N(r)=r™.

The scaling exponent, b, means that the value of the property, Q(r), measured at resolution
r is proportional to 7%

o(ry=rt.

Furthermore, the property, Q(r), is also equal to the number, N(r), of samples, multiplied
by the length, r, of the samples:

Q(r) = rN(r).
Therefore, by substitution:

On)=rré=rd=yp

2

and
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d=1+b.

In general,
N(r) =r™,
o(r)=r°,
o(r) = [N(O*r*
and therefore:
d= .é—_b.,
a

where theoretical justification is needed for how Q(r) depends on N( r) and r. Below, we
assume o= f=1.

Another measure of fractal behavior, the Fano Jactor, is equal to the variance/mean
and its value is dependent on the window length over which the variance and mean are
determined.

The connection of fractal behavior and wavelets is due to wavelet coefficients
giving local information about differentiability and Hoélder continuity of a function.
Furthermore, an essential characteristic of the wavelet transform is the ability to analyze a
process relative to scale or resolution. Also, the wavelet transform, by construction, builds
a signal by successive refinements, commencing from a coarse approximation and
proceeding at each step with finer details - a process identical to that of fractal
constructions.

Therefore, we explored this relationship to determine whether this form of analysis

might provide a useful thumbprint of target return signals.

12.1 Applications

The analysis was conducted on two representative target signal returns shown in
Fig. 12.1(A, B). The Gabor wavelet transforms of these signals, upon which the
subsequent analysis was performed, are shown in Fig. 12.2. A log-log plot (amplitude
versus filter scale) is shown for both signals in Fig. 12.3. Cuts through these plots (Fig.
12.4) show a stable distribution (as opposed to asymptotically Gaussian distribution)
behavior - increasing in the case of one signal, and decreasing in the case of the other. This
is a fractal property.

Using the log-log plots shown in Fig. 12.5, the fractional dimension per time bin
was computed and the results are shown in Fig. 12.6. The differences between the two
signals are clearly shown. ig. 12.7 recalls the original signals of Fig. 12.1 overlaid with
the fractional dimension plots of Fig. 12.6.

The Fano factors for means across filters and for each time bin are shown in Fig.
12.8. There is a clear difference in the patterns generated permitting the differentiation of
the signals.
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Fig. 12.1. A: Representative radar return signal #1; B. Representative radar return signal #2,

Pgt:l, Sig:#000] Az:

Tot:l,3igi#1162,42:~22,5300006 /A157.30000011%
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Fig. 12.2. (Gabor) wavelet transforms of signal #1 (A) and signal #2 (B).
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Fig. 12.3. Log-Log plots of wavelet transforms shown in Fig. 2.
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i . LOG-LOG Plot, Time Bins 10 - 110 - 19, 10 wavelats
LDG-LOG Plot, Time Bins %0 - 49, 10 wavelets

& 0.625

A. B.

Fig. 12.4. Cuts through the log-log plots of Fig. 12.3 across transforms,

L0G-103 Plot, Tgh:l, Sige#0001,Ax:-2¢.9899987,41:13.80953998 LOC-LOG Plot. Tgtil.SigiAi162,A2:-22.5300006.2117.38000001
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B.
Fig. 12.5. Log-Log plots of wavelet transforms shown in Fig. 12.2 - 1st 10 transforms.
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Fig. 12.6. Fractal dimensional representation of the signals of Fig. 12.2.
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Fig.12.7. Fractal dimensional representation of the signals of Fig. 12.2 with overlay of those signals.
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Fig. 12.8. Fano number representation of the signals of Fig. 12.2.
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13.0 Group Theoretical Approaches

This section addresses analyses in terms of (a) higher-order symmetries; (b)
differential forms; and (c) group theoretic, and formulations in electromagnetic theory of
the role of the A-field in (a) nonlinear collective excitations in a 2-dimensional electron gas;
and (b) solitons in new SAW devices and heterostructures in general. The method of
generation of modulated TeraHertz pulses utilizes a plasma mirror dependent on the
formation of soliton transmission. Therefore the following describes the commencement of
an analysis of such soliton transmissions using the various approaches described.

The equation of motion derived by Harmuth!:

2 2
9E_ QTE—(uo+as)%§——soE=0

o’ or

incorporating s, the magnetic conductivity, was shown by Barrett2to be a two-dimensional
Klein-Gordon equation in the sine-Gordon form, i.e., a soliton form. Soliton solutions
require complete integrability and integrable systems conserve geometric features related to
symmetry. Unlike the equations of motion for conventional Maxwell theory, which are
solutions of U(1) symmetry systems, solitons are solutions of SU(2) symmetry systems.
These notions of group symmetry are more fundamental than differential equation
descriptions. Therefore, this we develop some basic concepts in order to place differential
equation descriptions within the context of group theory.

Within this context, ordinary differential equations are viewed as vector fields on
manifolds or configuration spaces. For example, Newton’s equations are second order
differential equations describing smooth curves on Riemannian manifolds. Noether’s

theorem states that a diffeomorphism, ¢, of a Riemannian manifold, C, induces a

diffeomorphism, D¢, of its tangent bundle, TC. If ¢ is a symmetry of Newton’s equations,
then D¢ preserves the Lagrangian, i.e.,

LeDp=L.

As opposed to equations of motion in conventional Maxwell theory, soliton flows
are Hamiltonian flows. Such Hamiltonian functions define symplectic structures for which

! Harmuth, HF., Correction for Maxwell’s equations for signals 1. IEEE Trans. Electromagn. Compat.,
EMC-28, 250-258, 1986a;

» Correction for Maxwell’s equations for signals II. JEEE Trans. Electromagn. Compat.,
EMC-28, 259-265, 1986a;

2 Barrett, T.W., Comments on the Harmuth Ansatz: use of a magnetic current density in the calculation of
the propagation velocity of signals by amended Maxwell theory. JEEE Trans. Electromagn.
Compat., 30, 419-420, 1988.

, Comments on ‘Solutions of Maxwell’s equations for general nonperiodic waves in lossy
media’”?, IEEE Trans. Electromagn. Compat., 31, 197-199, 1989.

» Comments on ‘Some comments on Harmuth and his critics’”. JEEE Trans. Electromagn.
Compat., 31, 201-202, 1989.

» Electromagnetic phenomena not explained by Maxwell’s equations. pp. 6-86 in A.
Lakhtakia (Ed.) Essays on the Formal Aspects of Electromagnetic Theory, World Scientific, 1993.
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there is an absence of local invariants but an infinite dimensional group of diffeomorphisms
which preserve global properties. In the case of solitons, the global properties are those

permitting the matching of the nonlinear and dispersive characteristics of the medium
through which the wave moves. :

In order to relate the three major soliton equations to group theory it is necessary to
examine the Lax equation or the zero-curvature condition (ZCC). The ZCC expresses the
flatness of a connection by the commutation relations of the covariant derivative operators

(Palais, 1997):
0 0
——A,—-B|=0,
[&c o ]

or

()[4

Palais (1997) shows that the generic cases of soliton - the Korteweg de Vries
Equation (KDV), the Nonlinear Schrédinger Equation (NLS), the Sine-Gordon Equation
(SGE) - can be given an SU(2) formulation. In each case, below, V is a one-dimensional

0 b
space that is embedded in the space of off-diagonal complex matrices, (c OJ and in each

case A(u)=ald+u, where u is a potential, A is a complex parameter, and a is the

—-i 0
constant, diagonal, trace zero matrix a =( 0 i) - which links these equation to an

SU(2) formulation.

From inverse scattering theory, a function is needed, defined:

N +o0
B() =Y clexp[-x,£1+ —21— Joteyexplikglar, where
” —c0

n=1
—Kf,...,—x'f, are discrete eigenvalues of u,
C1>---Cy are normalizing consts, and

b(k) are reflection coefficients.

. 0 g(x)
In the first case, if u(x) = and

-1 0
i i -q?
Lok (2 =2
Buwy=aX+ul?+|2 27 34| 4 2 )

0 _i q _qx

q —_— —

2 2 4
then ZCC is satisfied if and only if g satisfies the KdV in the form q, = —%(qux +4q,. )
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. 0 g
In the second case, if u(x) = and

-q(x) O
i'|q|2 L
B(u) = a® +ul* + ; 21 ;2 ,
"5‘1, _'Z‘I‘II

then ZCC is satisfied if and only if g(x,) satisfies the NLS in the form
i 2
9= (4.+2lql"q).

0 -%WX
. . - 2
In the third case, if u(x) 7.(%) o and
2

T 42 sin[g(x)] —cos[g(x)

| [ cos|g(x sin|q(x
By = [ [q()]  sin[g(x)] J
]
then ZCC is satisfied if and only if ¢ satisfies the SGE in the form q, = sin[q].

Thus, with the equation of motion with electric and magnetic conductivity is in
soliton (SGE) form, the group symmetry for which is SU(2). Solitons define Hamiltonian
flows and their energy conservation is due to their symplectic structure.

The following are minimal topological and group theory definitions required to
follow the above-initiated arguments. The groups used in Yang-Mills theory are continuous
groups (as opposed to discrete groups). Unlike discrete groups, continuous groups contain
an infinite number of elements and can be differentiable or analytic.

U(n) Group Algebra
Unitary matrices have a determinant equal to 1. The elements are represented by
n X n unitary matrices.

U(1) Group Algebra

The one-dimensional unitary group, or U(1), is characterized by one continuous
parameter. U(1) is also differentiable and the derivative is also an element of U(1). A well-
known example of a U(1) group is that of all the possible phases of a wave function, which
are angular coordinates in a 2-dimensional space. When interpreted in this way - as the

internal phase of the U() group of electromagnetism - the U(1) group is merely a circle (0
- 2m).

Mobius Group, M, Algebra
Mobius, or M, transformations map the extended complex plane one-to-one onto

itself. An element is
m:C—->Cor
az+b

cz+d
ad—bc #0.

m(z) = with
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There is a homomorphism between M and GL(2,C). The mapping from GL(2,C) to M is:

a b a b
The determinant of /’L(c d] is A det (c d]’ whence it is seen that (1) 1 may be chaosen

in two ways and that (2) the determinant can be qual to +1 - which gives the group
SL(2,C).
Because of (1) it is seen that whereas SL(2,C) is simply connected, M is not.

Therefore SL(2,C) is the universal covering group of M. If u and v are complex numbers
and

U=au+bv
V=cu+dy
and if z=u/v and w= u’/v’, then
+
=% b a,b,c,d e R
cz+
and
ad—bc=1.

O(n) Group Algebra

The orthogonal group, O(n), is the group of transformation (including inversion) in
an n-dimensional Euclidean space. The elements of O(n) are represented by nxn real
orthogonal matrices with n(n—1)/2 real parameters satisfying AA* = 1.

O(3) Group Algebra
The orthogonal group,0O(3), is the well-known and familiar group of
transformations (including inversions) in 3-dimensional space with 3 parameters, those

parameters being the rotation or Euler angles (a,,7). O(3) leaves the distance squared,
x> +y* + 2%, invariant.

S0O(2) Group Algebra

The collection of matrices in Euclidean 2-dimensional space (the plane) which are
orthogonal and moreover for which the determinant is +1 is a subgroup of O(2). SO(2) is
the special orthogonal group in two variables. '

The rotations in the plane is represented by the SO(2) group:

R©O) = (cos[@] —sin[O]) 0cR

sin[@] cos[6]

where

R(O)R(Y) = R(O+7).
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!, or the unit circle in the complex plane with multiplication as the group operation is an
SO(2) group.

SO(3) Group Algebra :

The collection of matrices in Euclidean 3-dimensional space which are orthogonal
and moreover for which the determinant is +1 is a subgroup of O(3). SO(3) is the special
orthogonal group in three variables and defines rotations in 3-dimensional space.

Rotation of the Riemann sphere is a rotation in R® or &—n—{ space, for which

g+ +{=1
2 2y -1
5‘pf+f T |l2* +1° C‘kr+r
z=x+iy= §+177.
1-¢

Uiy = L1 TY” 0 Y1 (1 1\ (cosas2 isines2 . .
D=5l 1) o e V2{-1 1) lsina/2 cosasz) & U@ - R(a),
1 (1 =iY(eP2 1 (1 i) (cosB/2 —sin B/2
(P )_TE(—i 1)( 0 e*‘ﬁ’2)7“5(i 1)‘(5111 B/2 cosB/2j or 2U(B) > K.
1 (1 0Ye?2 0 Y1/(1 O cosy/2 —siny/2
= — — - +
v 45(0 1)( 0 e-fY/ZJJE(O 1) (siny/z cosy/ZJ or U (¥) = Ry(y).

which are mappings from SL(2,C) t0 SO(3). However, as the SL(2,C) are all unitary with

determinant equal to +1, they are of the SU(2) group. Therefore SU(2) is the covering

group of SO(3). Furthermore, SU(2) is simply connected and SO(3) is multiply connected.
A simplification of the above is:

Ug (a) = ei(a/2)0'1 ,
Un(ﬁ) - e—i(ﬂ/Z)O'z ,

U (y)=€7"2% where

_(O1y (0 -y (10
%o 27l o) 9=lo o)

0,,0,,0; are the Pauli matrices.
SU(n) Group Algebra
Unitary matrices have a determinant equal to *1. Special unitary matrices are

elements of unitary matrices which leave the determinant equal to +1. There are 7’ - 1
independent parameters. SU(n) is a subgroup of U(n) for which the determinant equals +1.
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SU(2) Group Algebra

SU(2) is a subgroup of SL(2,C). The are 2% - 1 = 3 independent parameters for the
special unitary group SU(2) of 2 x2matrices. SU(2) is a Lie algebra such that for the
angular  momentum  generators, J, the commutation relations are

[J,.,J j] =ig;J,,i,J,k =1,2,3. The SU(2) group describes rotation in 3-dimensional space

with 2 parameters (see below). There is a well-known SU(2) matrix relating the Euler
angles of O(3) and the complex parameters of SU(2) is:

cos[g]exp[zggziy—)] sin[g:lexp[_—(a—zﬁ:l
—sin[—g-]exp[i(—a-gl)] cosl:-'g-]exp[iq;—ﬂ:l

where «,B,y are the Euler angles. It is also well known that a homomorphism exists
between O(3) and SU(2), and the elements of SU(2) can be associated with rotations in
O(3); and SU(2) is the covering group of O(3). Therefore, it is easy to show that SU(2)
can be obtained from O(3). These SU(2) transformations define the relations between the
Euler angles of group O(3) with the parameters of SU(2). For comparison with the above,

if the rotation matrix R(e,3,% in O(3) is represented as:

cos[a]cos[Blcos[y]—sin[a]sin[y]  sin[a]cos[B]cos[y]+cos[e]sin[y] —sin[B]cos[y]
~cos[orjcos[ Blsin[y]~sin[e]cos[y] —sin[a]cos[Blsin[y]+cos[a]cos[y] sin[B]sin[y]
cos[a]sin[f] sin[a]sin[f3] cos[f]

then the orthogonal rotations about the coordinate axes are:

cos[e] sin[a] O)
R(a)=|-sin[a] cos[a] O
0 0 1

cos[f] 0 —sin[f])
R(PB)=| 0 1 0
sin[] 0 cos[B]

cos[y] sin[y] 0)
R,(y)=|—sin[y] cos[y] O
0 0 1

An isotropic parameter, @, can be defined:

X =iy
_——’
VA

o=
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where x,y,z are the spatial coordinates, If @ is written as the quotient of 4, and 41,, or the
homogeneous coordinates of the bilinear transformation, then:

A2 s

b, . ) oy
sl eft] e

which is the relation between the Euler angles of O(3) and the complex parameters of
SU(2). However, there is not a unique one-to-one relation, for 2 rotations in o@3)
correspond to 1 direction in SU(2). There is thus a many-to-one or homomorhpism
between O(3) and SU(2).

In the case of a complex 2-dimensional vector (u,v):

v cos[-g-]exp[w] sin’:gjexp[_(az_ v) ] !

_ 2
—sin[ﬁchp[ dChm 7)] cos[é]cxp[;z(a ha Y)]
VvV 2 2 2 2
If we define:
a= cos[é]exp[ Ke+y) }
2 2
b= sin[é]exp[—(a —~ Y)J
2 2
then
a b
Jeias) = [_b. a*]luluz%
where

a b
-b* a*

are the well-known SU(2) transformation rules, Defining:c =-b' and d = a’, we have the
determinant:

ad—-bc=1
or
aa’ - b(-b*) =1.
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Defining the (x,y,z) coordinates with respect to a complex 2-dimensioan] vector
(u,v) as:

x= l(u2 - vz),

2

1
y= ;i'(uz + Vz),
Z=Uuy

then SU(2) transformations leave the squared distance x* +y? + 72 invariant,
Every element of SU(2) can be written as:

a b
[_ b a,,:l, where
la* + b =1.

Now if we define:

a=y —iy,,
b=y, - iy,,

then the parameters y,,y,,y,, Y, indicate positions in SU(2) with the constraint:

Y+ +yr+y =1,

which indicates that the group SU(2) is a 3-dimensional unit sphere in the 4-dimensional y-
space. This means that any closed curve on that sphere can be shrunk to a point. In other
words, SU(2) is simply-connected.

- SU(2) is the quantum mechanical “rotation group”.

SU(3) Group Algebra
SU(3) has n*-1 = 8 generators.

SL(2,C) Group Algebra

The special linear group of 2 x 2 matrices of determinant 1 with complex entries is
SL(2,C).

GL(n,R) Group Algebra

The collection of real non-singular n X n invertible matrices is GL(n,R) or the real
general linear group in # variables.

SL(n,R) Group Algebra
SL(n,R) is a subgroup of GL(n,R) with determinant = +1.

GL(n,C) Group Algebra

The collection of complex non-singular 7 x n invertible matrices is GL(n,C) or the
complex general linear group in 7 variables.
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SL(n,C) Group Algebra
SL{n,C) is a subgroup of GL(n,C) with determinant = +1.

Sp(2,n) Group Algebra
A 2n-dimensional space can be defined as:

(,y) = (XY™ = 2™y )+ (2™ = x"7y2) o (2 - 2Py
=x'Jy

Sp(2,n) is a noncompact symplectic group.with form invariance:

0
J = (_1 On) where 1_ = nXn unit matrix.

Sp(2,n) satisfy:

A'JA=1.

Lie Group Algebras

If a topological group is a group and also a topological space in which group
operations are continuous, then Lie groups are topological groups which are also analytic
manifolds on which the group operations are analytic.

In the case of Lie algebras, the parameters of a product are analytic functions of the
parameters of each factor in the product. For example,

L(y) = L(a)L(B)
where
Y = f(a.B).

This guarantees that the group is differentiable. The Lie groups used in Yang-Mills theory
are compact groups, i.e., the parameters range over a closed interval.

13.1 Calculations:
The nonlinear Schrodinger equation (NLS) is:

% _idq .o 9, 420
3Z“228T2+l|ql q+&p, 3T3+6lql =T

where

q is the normalized effective amplitude of the wave electric field:

27gn,
Ae

where g is the gain, n, is the Kerr coefficient, A = 27c/ @, € = Aw/o, is a small parameter
and E is the electric field intensity;

q= E,
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T is time normalized by the characteristic time, 1,, of the side band spectrum, (Aw1 )"l,and
the coordinate 7, defined: 7 = (r — k' z), where &’ is the derivative of the wavenumber or

ok/dw evaluated at @, the angular frequency of the coherent light carfier and z is the axial
distance. T is therefore:

T
T=—.
L

Z is the axial distance normalized by the dispersion distance, z, = -7 /k", defined for the
spectrum, A, and, {, defined: ¢ = £2/z. Z is therefore:

z=%,
Zy
1k 'z, . . . . .
B = P is the linear hgher-order dispersion coefficient.
0

The bound two-soliton solution or N-soliton solution of the NLS equation is3:

= —Z-[M)(nl cosh 6, exp|ic;, | + 7, cosh 6, explic, )
A h—1n
where

n+n, 4nn,
A =cosh(f, +86,)+| ——=2 |cosh(6, — 8 +-—=cos(0,-0,),
( 1 2) (771_772) ( 1 2) (771’772)2 ( 1 2)

6,=nT+6, =12
6,, = constant.

The phase, o,, satisfies:

do, 1 _,
dZ—ZTh.

7 represents the amplitude as well as the pulse width of the soliton.
This solution is found for the input pulse shape initial value:

q(T,0) = AsechT.

Fig. 13.1 shows examples for two values of 7, and 7, and with 6,=nT,0,=1Z/2 for |
= 1,2.

Higher-order terms appear at distances longer than 10%,. In this case, 1, , are
defined as3:

3 Hasegawa, A. & Kodama, Y., Solitons in Optical Communications, Oxford U. Press, 1995.
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Fig. 13.2 shows the interaction of two equal amplitude pulses in the presence of third-order
dispersion.

In order to increase the rate of pulse generation it is desirable to place solitons close
to each other. However, because of the nonlinearity of the system, solitons mutually
interact, leading to deterioration in the repetition rate. In the case of in-phase solitons with
equal amplitude we consider the solution of the NLS equation with two soliton interaction.

with T, = 7, corresponding to n, =1.072, n,=0.952 and Z,=26.3 (Fig. 13.3). Z, = Z)2
is the collision distance of the pulses.

In the case of off-phase solitons with equal amplitudes, the NLS takes an
asymptotic form:

q(T,Z) = zz‘,n, sechn,(T +x,Z - T:,)exp[—ix,T +i(n? - x7)/2+ io-g,], as Z — oo,

I=1

where

I, 1.]e
K .= _.l] [_0:',
12 _2exp[ > sin 5
T, )
=1+2e —-—0]005[—9—].
M2 XP[ 2 2

Fig. 13.4A shows the evolution of two unity amplitude sech pulses with an initial phase
difference of ¢, = /4 and an initial pulse separation of T, = 7.

In the case of in-phase solitons with unequal amplitudes,

N,= i[—é'il- +sec h[ﬂﬂ
’ 2 2

Fig. 13.5. shows the eigenvalues 1, for two unequal amplitude sech pulses as a function
of the initial separation T, and Fig. 13.4B. shows soliton interaction with two unequal
amplitude pulses, A, = 1.1 and the initial pulse separation T, = 7.
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Bourd Two-Soliton Sokdions
m =3,71:=LZ,=M2

Baurd Two-Soliton Soksions
M =3, = 15,2, = 167/5

Fig. 13.1.Two examples of bound two-solitons. A: T =3,7,=1, giving Z=n/2; B: 5, = 1.5, =1,
giving Z, = 16n/5.
Trbcractsx of Twe Equal Somplitude Pulesin e Presence of Tairk-Ovier Dispersion Imeackon of Two Equal Amgiitede Pulses ix Me Presexce of Txirk-Onier Disporsion

<6) =005  iniial semoaion: T, = 10 ) =0.05; intial sepxoation: Tp =7,

B
Fig. 13.2. Interaction of two equal amplitude pulses in the presence of third-order dispersion. (A): initial
separation T, = 10; (B) initial separation T,=1.
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Soldon bderuciox with iwo equal anpliude pulses;
initia? palse separafion: Tp =7, correspording do: ny = 1.072; n, =0.95%; Z,=263.

100

Fig. 13.3. Soliton interaction with two equal amplitude pulses. Initial pulse separation T, = 7.
Evoltution of Two Unity Awpitukie Scck Pulses widk initial fyorenc Seliion indem ! awgelidade puudses;
& _z/dlim;z’zmn Tp =7 Bl o o= LLWFWWI- =7

Fig. 134. (A) Evolution of two unity amplitude sech pulses with an initial phase difference of ¢, = /4.
Initial phase separation , T = 7. (B) Soliton interaction with two unequal amplitude pulses, A, = 1.1 and
the initial pulse separation T, = 7.
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Fig. 13.5. Eigenvalues, 7,2 for two unequal amplitude sech pulses as a function of the initial separation,
T,.
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14.0 The Bootstrap

This section addresses analyses offered by the Bootstrap method for estimating the
accuracy of a paramater estimator taken, in the instances addressed, as radar signal returns.
Here, we show - for the first time to our knowledge - that the technique can be applied to
distinguish targets. We also apply techniques taken from fractal theory and deterministic
chaos theory to show that radar returns have both a fractal nature and are not time series
produced by a random mechanism, but rather by a deterministic chaotic mechanism. We are
able to show that the fractal properties of the power spectra, the variance and Fano Factor
distinguish between two target returns. Use of embedding dimensional analysis also
reveals the deterministic chaotic, as opposed to random, nature of the radar returns. The
third report from Northwestern University is also included.

The bootstrap* is a technique for estimating the accuracy of a parameter estimator
where additional re-samplings to gain additional raw data is not possible. In radar signal
processing, large sample methods are not possible. Here we apply this technique to
determine differences between two target returns (Fig. 14.1). The technique has only
commenced to be used in radar processing®. The bootstrap does what in an ideal situation a
radar operator would do if it were possible - that is, the operator would repeat again and
again irradiating a stationary target (as if it were on a range). In the case of the bootstrap,
the measurements in each time bin of the signal return are randomly reassigned and
estimates are recomputed. This can be done hundreds, even thousands, of times and the
results are treated as if they were real repeat test measurements.

In RefS there is discussed an application in which the distribution of the estimated
“close approach probability” is used as an index of collision risk in air traffic control. Here,
we show - for the first time to our knowledge - that the technique can be applied to
distinguish targets.

4 Tibshirani, RJ., Variance stabilization and the bootstrap. Biometrika, 75, 433-444, 1988.
Efron, B. & Tibshirani, R., Bootstrap methods for standard errors, confidence intervals and other measures
of statistical accuracy. Statistical Science, 1, No 1, 1217-1241, 1989.
Efron, B. & Tibshirani, R.J., An Introduction to the Bootstrap, Chapman & Hall, NY, 1993.
Zouhir, A.M. & Boashash, B., The bootstrap and its application in signal processing. JEEE Signal
Processing Magazine, January, 15, No. 1, 56-76, 1998;

Politis, D.N., Computer-intensive methods in statistical analysis. JEEE Signal Processing Magazine,
January, 15, No. 1, 39-55, 1998;
5 Nagaoka, S. & Amai, O., A method for establishing a separation in air traffic control using a radar
estimation accuracy of close approach probability. J. Japan Ins. Navigation 82, 53-60, 1990;
Nagaoka, S. & Amai, O., Estimation accuracy of close approach probability for establishing a radar
separation minimum. J. Navigation 44, 110-121, 1991.
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A. B.
Fig. 14.1. Two radar return signals, A. and B.

800

The basic principle is that if X = {X ,X,,...,X,} is a sample - in the present
instance it is a radar return signal - it may be considered as a collection of # numbers drawn

at random from an unspecified distribution, F. If ¥ denotes a characteristic of F, e.g., its

mean Or variance, then if an estimator of ¥, ¥#, were known, then ¥ could be judged to
exceed a certain bound.

Put another way, the boostrap procedure assumes that the sample X itself is the
underlying distribution. By resampling from X many times and computing ®* for each of
the resamples a bootstrap dsitribution of ¥+ is obtained that approximates the real
distribution of ¥* and from which confidence intervals can be derived.

A way this can be done is if the X’s are considered to be independent and
identically distributed random variables and are part of the sample distribution, F*, which

is considered close to the true distribution, F, i.e., F* approaches F as n—oo.

Using a pseudorandom number generator, 100 samples of 177 values (Signal #1)
and 812 values (Signal #2) were drawn, with replacement, from the Signals #1 and #2
(Fig. 14.1). The means and standard deviations of these samples were then calculated and
sorted. The results are shown in Fig. 14.2, with mean standard deviations and confidence
limits indicated.

TGt:l,S1g:H0001 , AZ3-28. 9899997 ,A1:13

Deviaticas TGLI1,6iq1P1162,A21-22.5300006,4117.380000114 Bootstrap Standard Deviatioms
.

0.16
0.0852 .
-
0.35 .
-
¢.05 e -
/—_,.— 0.1 -
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Fig. 14.2. Bootstrap Standard Deviations: 100 random samples, with replacement, from the radar signal
returns. In A. the mean standard deviation is 0.0476 and the 95% confidence interval is (0.0419, 0.0539). In
B. the mean standard deviation is 0.1154 and the 95% confidence interval is (0.09553, 0.151 14).

125




The bootstrap method also is able to indicate skewness of distributions. Fig. 14.3
shows histogram plots of the data shown in Fig. 14.2 with superimposed probability
density function of a Gaussian variable. It is evident that Signal #1 is skewed to the higher
density values and Signal #2 to the lower.
m;;“sum s;:;;:'wun;:“” Tgt:l,Sig#1162,A2:-22.5300006,A1:7.380000114

) 9 10 Bootstrap Standard Deviations
1 2 s 5 ?

1

L] 9 10

1 2 3

. 5 L3 ?
Bootstrap Estimates

A.

Fig. 14.3. Histograms of the bootstrap standard deviations based on random samplings of signal A. and
signal B. The solid line indicates the probability density function of a Gaussian variable with 2 mean of 5.0
and variance 2.5.

14.1 Fractal Dimensions and Chaos

The power spectra of fractal processes in time reflect the statistical properties of
those properties. Self-similarity means that there is a relationship between the power at the
high frequencies (fine resolution) and the power at the low frequencies (coarse resolution).
This relationship has power law scaling and the energy at a given frequency is proportional

to 1/f* Therefore, log(power spectrum) = -a. log(spatial frequency), and o can be found
from the slope of the power spectrum curve in log-log plots.

In the case of fractal processes, the total power at all frequencies in the power
spectrum and the average power do not exist. If o > 1, (as in Fig. 14.4, below), the total
energy increases as the lowest frequency used to measure it decreases, or, the longer the
interval of data that is analyzed, the larger the total power in the power spectrum. If & < 1,

the total power increases as the highest frequency used to measure it increases, or, the ever
shorter intervals of data contain ever larger amounts of power.
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Fig. 14.4. Log-Log plots of spatial frequency versus the power spectrum. The solid line indicates the fractal
power spectrum relation: P(f) = 1/f* The slope of A is -2.98985; of B is -2.89493.

In the case of fractal processes, the moments (mean, variance, etc.) depend on the
resolution used to measure them. Therefore, multiple sampling of the signals shown in Fig.
1 at different average temporal sampling windows, reveals the dependency of the moments
on the sampling window resolution. The scaling relationship describes this dependency on
the resolution and it is characterized by the fractal dimension, d. Again, calculating the
slope of a log-log plot, this time of the moments, which for Fig. 14.5 are the standard
deviations, versus the temporal sampling window, provides the method. The differing
values of d are given in the caption to Fig. 14.5.

Tgtal,Sig:#0001 ,A2:-24.9899997,41:13.80999994 Tghil,Sig#1162,A2:-22.5300006,42:7.380000121¢
LOG (STANDARD DEYIATIONS) LOG (STAXDARD DEVIATIONS)
1 1.5 2 3 5 7 10 15 20 2 s 10 20

-

0.03 0.03

1 1.5 2 3 H 7 10 15 20 1 2 H 10 20
AT (sampling) AT (sampling)
. B.
Fig. 14.5. Log-Log plots of the standard deviations versus sampling time windows. The solid line indicates
how a moment - in this case the standard deviation, depends on the resolution (temporal sampling window
duration) used to measure it. The slope of A is 0.1385; of B is 0.05425. ‘

According to Takens’ theoremS, the entire phase space set of a deterministic chaotic
process can be constructed from one independent variable, A consequence of the theorem is
that a deterministic chaotic process will exhibit a phase space set with increasing N, the
dimension of the phase space, or the number of values of the data taken at a time to produce
the phase space set (the embedding dimension). Thus, the fractal dimension of a
deterministic chaotic process will reach a limiting value. However, if the process is
random, the fractal dimension of the phase space set increases as the embedding dimension
increases, i.e., as the number of values of the data taken at a time to produce the phase

6 Takens, in Rand & Young, (Ed.s) Dynamical Systems and Turbulence, Springer-Verlag, NY, Pp. 366-
381, 1981.
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space set increases. In the case of the deterministic chaos process, the time series was
generated by a finite set of independent variables, and in the case of a random process, the
time series is generated by an infinite set of independent variables.

Fig. 14.6 shows that as the embedding dimension increases, both signals do not
show a steadily increasing fractal dimension. Rather, both signals reach limiting values
slightly less than 3. Thus, the time series for both signals were generated by a deterministic
rule that can be described by 3 equations with 3 independent variables.

7gt:l, Sig:#0001 A2:-20.9899987,11:13.8099999¢

Tgt:1.519:00001 47249899997, 0111 3. 20999894 - FRACTAL D. i
TRACTAL DDENSIONG

) 20 0 M 80 100 120 Te0 ° 200 so0 soo soo
L1
# valuss of the data take at 4 tive # values of “':" taken at 2 time
e
fractal diwension fractal dimension

Fig. 14.6. The fractal dimension of a phase space set of a random time series increases as the embedding
dimension increases. Here, it is shown that as the embedding dimension increases (= number of values of

As the statistical properties (e.g., the mean and variance) of a fractal time series
depend on the resolution used to measure them, it is not appropriate to measure these
statistical properties at only one resolution. However, it is appropriate to determine how
these statistical properties depend on the resolution used to measure them. The Fano Factor
is a statistical measure appropriate for measuring the statistical properties of fractal
processes and is defined as the variance divided by the mean. The Fano Factor has a power
law form that is proportional to 7%, where r is the resolution and b is related to the fractal
dimension. Thus b can be calculated from the slope of a log-log plot of the Fano Factor
versus the temporal length, r = T, of the sampling window of the time series. Fig. 14.7
shows such plots for both the signals of Fig. 1.

The fractal dimension, d, is related to » by:

where o and B are exponents determining how the measured property depends on the
number of samples and the resolution. We have established (Fig. 14.6) that the process
generating the signals is deterministic chaotic and described by 3 independent variables,

Therefore =3 (and & = 1). From the values for b calculated from Fig. 14.7 and shown in

the caption, we calculate d = 3.27 (Signal #1) and d = 3.09 (Signal #2), which values are
different by 9% and 7% from those values for 4 shown in Fig.s 14.4 and 14.6, or within
the range of acceptable error.
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Fig. 14.7. The Fano factor, F, is equal to the variance divided by the mean. Here are Log-Log plots of the
Fano Factor as a function of the temporal length of the sampling windows. There is a power law
relationship of the Fano factor with respect to the temporal sampling window length, T: F = T, where b is
related to the fractal dimension (solid line). In the case of A. b = -0.268646 B. In the case of B: b = -
0.0939912.

129



15.0 Summary Recommendations

As was stated in 1.3 State of the Art Benchmark from which BSEI
Research Proceeds, we have sought to either identify or create methods different from
state-of-the-art for solving the BMDO problem of providing an ultrahigh resolution sensor
which can identify missile from decoy. We advocate sensor/radar systems using pulses
shorter than the length of the target, adaptive time-frequency analysis methods which
preserve target backscattering centers and resonances, and pattern identification of target
and decoy.

In particular, we have created

« extensions of the Gabor transform (CQOW)
» adaptive methods

* methods involving the instantaneous phase
» mutual information methods

» Zak transform methods

which can achieve preserve target backscattering and target resonance and provide the input
for procedures permitting pattern identification of target and decoy.

Furthermore, we have created methods usin g
« the bootstrap
» fractal dimension
* Fano number
* deterministic chaos methodologies
to provide precision in identification of target and decoy.

Our recommendation for the next step to be taken is to implement these new
methods in emulation or real-time systems.
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